Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto and Decision Centre for Infectious Disease Epidemiology (DeCIDE), 155 College Street, Toronto, Ontario, Canada.
Vaccine. 2013 Jan 30;31(6):973-8. doi: 10.1016/j.vaccine.2012.11.097. Epub 2012 Dec 13.
Number-needed-to-vaccinate (NNV) calculations are used with increasing frequency as metrics of the attractiveness of vaccination programs. However, such calculations as typically applied consider only the direct protective effects of vaccination and ignore indirect effects generated through reduction of force of infection (i.e., risk of infection in susceptible individuals). We postulated that such calculations could produce profoundly biased estimates of vaccine attractiveness.
We used mathematical models simulating endemic and epidemic diseases with a variety of epidemiological characteristics, and in the face of varying approaches to immunization, to evaluate biases associated with exclusion of transmission. We generated number-needed-to-vaccinate calculations using both traditional methods, and using a more realistic approach that defines this quantity as the ratio of cases prevented through vaccination (directly or indirectly) to individuals vaccinated. We quantified bias as the ratio of estimates produced using these two different methods.
Across a range of simulated infectious diseases with variable epidemiological characteristics, and in the context of both pulsed vaccination and ongoing vaccine programs, traditional NNV calculations based on systems using plausible infectious disease parameters produced estimates biased by up to 3 orders of magnitude (i.e., 1000 fold). Unbiased NNV estimates were seen only in the context of diseases with extremely high reproductive numbers that could be prevented with highly efficacious vaccines.
When evaluated using mathematical models that simulate common vaccine-preventable diseases of public health importance, typical number-needed-to-vaccinate calculation produce marked over-estimates relative to NNV calculations incorporating the fundamental transmissibility of communicable diseases. NNV calculations should be used with caution and interpreted critically when used as metrics for the potential community-level impact of vaccination programs.
作为衡量疫苗接种计划吸引力的指标,接种人数(NNV)的计算正越来越频繁地被使用。然而,这种计算通常只考虑疫苗接种的直接保护效果,而忽略了通过减少感染力(即易感人群感染的风险)产生的间接效果。我们假设这种计算可能会对疫苗的吸引力产生严重的偏见估计。
我们使用模拟地方性和流行性疾病的数学模型,具有各种流行病学特征,并针对不同的免疫接种方法,评估了排除传播相关的偏倚。我们使用传统方法和更现实的方法生成接种人数的计算,该方法将该数量定义为通过接种(直接或间接)预防的病例数与接种个体数的比值。我们将使用这两种不同方法产生的估计值的比值作为偏差的定量指标。
在具有不同流行病学特征的一系列模拟传染病中,以及在脉冲接种和持续疫苗接种的情况下,基于使用合理传染病参数的系统的传统 NNV 计算产生的估计值存在高达 3 个数量级(即 1000 倍)的偏差。只有在疾病的繁殖数量极高且可以通过高疗效疫苗预防的情况下,才能看到无偏差的 NNV 估计值。
当使用模拟具有公共卫生重要性的常见疫苗可预防疾病的数学模型进行评估时,典型的接种人数计算与纳入传染病基本传播性的 NNV 计算相比,产生了明显的高估。在将 NNV 计算用作衡量疫苗接种计划对社区层面影响的指标时,应谨慎使用并批判性地解释。