Suppr超能文献

基于仿生超疏水基底的新型方法,用于将细胞和蛋白质固定在水凝胶球中,应用于骨再生。

Novel methodology based on biomimetic superhydrophobic substrates to immobilize cells and proteins in hydrogel spheres for applications in bone regeneration.

机构信息

3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Caldas das Taipas 4806-909, Portugal.

出版信息

Tissue Eng Part A. 2013 May;19(9-10):1175-87. doi: 10.1089/ten.TEA.2012.0249. Epub 2013 Feb 19.

Abstract

Cell-based therapies for regenerative medicine have been characterized by the low retention and integration of injected cells into host structures. Cell immobilization in hydrogels for target cell delivery has been developed to circumvent this issue. In this work mesenchymal stem cells isolated from Wistar rats bone marrow (rMSCs) were immobilized in alginate beads fabricated using an innovative approach involving the gellification of the liquid precursor droplets onto biomimetic superhydrophobic surfaces without the need of any precipitation bath. The process occurred in mild conditions preventing the loss of cell viability. Furthermore, fibronectin (FN) was also immobilized inside alginate beads with high efficiency in order to mimic the composition of the extracellular matrix. This process occurred in a very fast way (around 5 min), at room temperature, without aggressive mechanical strengths or particle aggregation. The methodology employed allowed the production of alginate beads exhibiting a homogenous rMSCs and FN distribution. Encapsulated rMSCs remained viable and were released from the alginate for more than 20 days. In vivo assays were also performed, by implanting these particles in a calvarial bone defect to evaluate their potential for bone tissue regeneration. Microcomputed tomography and histological analysis results showed that this hybrid system accelerated bone regeneration process. The methodology employed had a dual role by preventing cell and FN loss and avoiding any contamination of the beads or exchange of molecules with the surrounding environment. In principle, the method used for cell encapsulation could be extended to other systems aimed to be used in tissue regeneration strategies.

摘要

用于再生医学的基于细胞的疗法的特点是注射细胞在宿主结构中的低保留和整合。为了解决这个问题,已经开发了将靶细胞递送到水凝胶中的细胞固定化。在这项工作中,从 Wistar 大鼠骨髓中分离的间充质干细胞(rMSCs)被固定在藻酸盐珠中,藻酸盐珠的制备采用了一种创新的方法,涉及将液体前体液滴胶凝到仿生超疏水表面上,而无需任何沉淀浴。该过程在温和的条件下进行,防止了细胞活力的丧失。此外,还高效地将纤连蛋白(FN)固定在藻酸盐珠内,以模拟细胞外基质的组成。该过程在非常快的方式下(约 5 分钟),在室温下,不需要强烈的机械强度或颗粒聚集。所采用的方法允许生产具有均匀 rMSCs 和 FN 分布的藻酸盐珠。包封的 rMSCs 保持活力,并在藻酸盐中释放超过 20 天。还进行了体内试验,通过将这些颗粒植入颅骨骨缺损中,评估它们用于骨组织再生的潜力。微计算机断层扫描和组织学分析结果表明,这种杂交系统加速了骨再生过程。所采用的方法具有双重作用,可防止细胞和 FN 的损失,并避免珠子的任何污染或与周围环境的分子交换。原则上,用于细胞包封的方法可以扩展到其他旨在用于组织再生策略的系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验