Paterlini Thais T, Nogueira Lucas F B, Tovani Camila B, Cruz Marcos A E, Derradi Rafael, Ramos Ana P
Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, 14040-901, Brazil.
Biophys Rev. 2017 Oct;9(5):683-698. doi: 10.1007/s12551-017-0306-2. Epub 2017 Aug 22.
The success of a biomaterial relies on an appropriate interaction between the surface of that biomaterial and the surrounding environment; more specifically, the success of a biomaterial depends on how fluids, proteins, and cells interact with the foreign material. For this reason, the surface properties of biomaterial, such as composition, charge, wettability, and roughness, must be optimized for a desired application to be achieved. In this review we highlight different bioinspired approaches that are used to manipulate and fine-tune the interfacial properties of biomaterials. Inspired by noteworthy natural processes, researchers have developed materials with a functional anatomy that range from hierarchical hybrid structures to self-cleaning interfaces. In this review we focus on (1) the creation of particles and modified surfaces inspired by the structure and composition of biogenic mineralized tissues, (2) the development of biofunctional coatings, (3) materials inspired by biomembranes and proteins, and (4) the design of superwettable materials. Our intention is to point out different bioinspired methodologies that have been used to design materials for biomedical applications and to discuss how interfacial properties modified by manipulation of these materials determine their final biological response. Our objective is to present future research directions and to highlight the potential of bioinspired materials. We hope this review will provide an understanding of the interplay between interfacial properties and biological response so that successful biomaterials can be achieved.
生物材料的成功依赖于该生物材料表面与周围环境之间的适当相互作用;更具体地说,生物材料的成功取决于流体、蛋白质和细胞如何与外来材料相互作用。因此,生物材料的表面性质,如组成、电荷、润湿性和粗糙度,必须针对期望实现的应用进行优化。在本综述中,我们重点介绍了用于操纵和微调生物材料界面性质的不同仿生方法。受值得关注的自然过程启发,研究人员开发出了具有功能结构的材料,其范围从分级混合结构到自清洁界面。在本综述中,我们关注:(1)受生物矿化组织的结构和组成启发而制造的颗粒和改性表面;(2)生物功能涂层的开发;(3)受生物膜和蛋白质启发的材料;以及(4)超润湿性材料的设计。我们的目的是指出已用于设计生物医学应用材料的不同仿生方法,并讨论通过操纵这些材料而改性的界面性质如何决定其最终的生物学反应。我们的目标是提出未来的研究方向,并突出仿生材料的潜力。我们希望本综述能让人理解界面性质与生物学反应之间的相互作用,从而实现成功的生物材料。