Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, 57078 Metz, France.
Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
Molecules. 2022 Dec 24;28(1):136. doi: 10.3390/molecules28010136.
Despite great advances in X-ray absorption spectroscopy for the investigation of small molecule electronic structure, the application to biosystems of experimental techniques developed within this research field remains a challenge. To partially circumvent the problem, users resort to theoretical methods to interpret or predict the X-ray absorption spectra of large molecules. To accomplish this task, only low-cost computational strategies can be exploited. For this reason, some of them are single Slater determinant wavefunction approaches coupled with multiscale embedding techniques designed to treat large systems of biological interest. Therefore, in this work, we propose to apply the recently developed IMOM/ELMO embedding method to the determination of core-ionized states. The IMOM/ELMO technique resulted from the combination of the single Slater determinant Δself-consistent-field-initial maximum overlap approach (ΔSCF-IMOM) with the QM/ELMO (quantum mechanics/extremely localized molecular orbital) embedding strategy, a method where only the chemically relevant region of the examined system is treated at fully quantum chemical level, while the rest is described through transferred and frozen extremely localized molecular orbitals (ELMOs). The IMOM/ELMO technique was initially validated by computing core-ionization energies for small molecules, and it was afterwards exploited to study larger biosystems. The obtained results are in line with those reported in previous studies that applied alternative ΔSCF approaches. This makes us envisage a possible future application of the proposed method to the interpretation of X-ray absorption spectra of large molecules.
尽管 X 射线吸收光谱学在研究小分子电子结构方面取得了巨大进展,但将该研究领域内开发的实验技术应用于生物系统仍然是一个挑战。为了部分解决这个问题,用户求助于理论方法来解释或预测大分子的 X 射线吸收光谱。为了完成这项任务,只能利用低成本的计算策略。出于这个原因,其中一些是单 Slater 行列式波函数方法,结合多尺度嵌入技术,用于处理具有生物学意义的大型系统。因此,在这项工作中,我们提议将最近开发的 IMOM/ELMO 嵌入方法应用于确定核心离子化态。IMOM/ELMO 技术是由单 Slater 行列式 Δ自洽场初始最大重叠方法(ΔSCF-IMOM)与 QM/ELMO(量子力学/极端局域分子轨道)嵌入策略相结合而产生的,该方法仅在完全量子化学水平上处理被研究系统的化学相关区域,而其余部分则通过转移和冻结极端局域分子轨道(ELMO)来描述。IMOM/ELMO 技术最初是通过计算小分子的核心离化能来验证的,然后将其用于研究更大的生物系统。得到的结果与应用替代 ΔSCF 方法的先前研究报告的结果一致。这使我们设想该方法可能未来会被应用于解释大分子的 X 射线吸收光谱。