Howard Hughes Medical Institute, Urbana, IL 61801, USA.
Rep Prog Phys. 2013 Jan;76(1):016601. doi: 10.1088/0034-4885/76/1/016601. Epub 2012 Dec 18.
Precision measurement is a hallmark of physics but the small length scale (∼nanometer) of elementary biological components and thermal fluctuations surrounding them challenge our ability to visualize their action. Here, we highlight the recent developments in single-molecule nanometry where the position of a single fluorescent molecule can be determined with nanometer precision, reaching the limit imposed by the shot noise, and the relative motion between two molecules can be determined with ∼0.3 nm precision at ∼1 ms time resolution, as well as how these new tools are providing fundamental insights into how motor proteins move on cellular highways. We will also discuss how interactions between three and four fluorescent molecules can be used to measure three and six coordinates, respectively, allowing us to correlate the movements of multiple components. Finally, we will discuss recent progress in combining angstrom-precision optical tweezers with single-molecule fluorescent detection, opening new windows for multi-dimensional single-molecule nanometry for biological physics.
精密度测量是物理学的一个标志,但基本生物成分的小尺度(约纳米)及其周围的热波动挑战了我们可视化其活动的能力。在这里,我们重点介绍单分子纳米计量学的最新发展,其中单个荧光分子的位置可以以纳米精度确定,达到由散粒噪声施加的限制,并且两个分子之间的相对运动可以以约 0.3nm 的精度和约 1ms 的时间分辨率确定,以及这些新工具如何为我们提供有关马达蛋白如何在细胞高速公路上移动的基本见解。我们还将讨论如何使用三个和四个荧光分子之间的相互作用分别测量三个和六个坐标,从而允许我们关联多个组件的运动。最后,我们将讨论将埃精度光学镊子与单分子荧光检测相结合的最新进展,为生物物理学的多维单分子纳米计量学开辟了新的窗口。