Suppr超能文献

选择性结合谷氨酰胺的细菌适体。

Bacterial aptamers that selectively bind glutamine.

机构信息

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.

出版信息

RNA Biol. 2011 Jan-Feb;8(1):82-9. doi: 10.4161/rna.8.1.13864. Epub 2011 Jan 1.

Abstract

The continued expansion of microbial sequence data has allowed for the detection of an increasing number of conserved RNA motifs by using comparative sequence analysis. Recently, we reported the discovery of two structured non-coding RNA motifs, called glnA and Downstream-peptide, that have similarity in sequence and secondary structure. In this report, we describe data demonstrating that representatives of both RNA motifs selectively bind the amino acid L-glutamine. These glutamine aptamers are found exclusively in cyanobacteria and marine metagenomic sequences, wherein several glnA RNA representatives reside upstream of genes involved in nitrogen metabolism. These motifs have genomic distributions that are consistent with a gene regulation function, suggesting they are components of glutamine-responsive riboswitches. Thus, our findings implicate glutamine as a regulator of cyanobacterial nitrogen metabolism pathways. Furthermore, our findings expand the collection of natural aptamer classes that bind amino acids to include glycine, lysine and glutamine.

摘要

微生物序列数据的不断扩展,使得通过比较序列分析来检测越来越多的保守 RNA 基序成为可能。最近,我们报道了两个结构非编码 RNA 基序的发现,称为 glnA 和 Downstream-peptide,它们在序列和二级结构上具有相似性。在本报告中,我们描述了数据表明这两个 RNA 基序的代表物都能选择性地结合氨基酸 L-谷氨酰胺。这些谷氨酰胺适体仅存在于蓝藻和海洋宏基因组序列中,其中几个 glnA RNA 代表物位于参与氮代谢的基因上游。这些基序的基因组分布与基因调控功能一致,表明它们是谷氨酰胺反应性核糖开关的组成部分。因此,我们的发现表明谷氨酰胺是蓝藻氮代谢途径的调节剂。此外,我们的发现扩展了结合氨基酸的天然适体类别的集合,包括甘氨酸、赖氨酸和谷氨酰胺。

相似文献

1
Bacterial aptamers that selectively bind glutamine.
RNA Biol. 2011 Jan-Feb;8(1):82-9. doi: 10.4161/rna.8.1.13864. Epub 2011 Jan 1.
2
Guanine riboswitch variants from Mesoplasma florum selectively recognize 2'-deoxyguanosine.
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16092-7. doi: 10.1073/pnas.0705884104. Epub 2007 Oct 2.
3
Role of GlnR in Controlling Expression of Nitrogen Metabolism Genes in .
J Bacteriol. 2020 Sep 8;202(19). doi: 10.1128/JB.00209-20.
4
A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate.
Chem Biol. 2010 Jul 30;17(7):681-5. doi: 10.1016/j.chembiol.2010.05.020.
6
Biochemical Validation of a Fourth Guanidine Riboswitch Class in Bacteria.
Biochemistry. 2020 Dec 15;59(49):4654-4662. doi: 10.1021/acs.biochem.0c00793. Epub 2020 Nov 25.
7
Antisense RNA regulates glutamine synthetase in a heterocyst-forming cyanobacterium.
Plant Physiol. 2024 Jul 31;195(4):2911-2920. doi: 10.1093/plphys/kiae263.
8
Biochemical Validation of a Second Guanidine Riboswitch Class in Bacteria.
Biochemistry. 2017 Jan 17;56(2):352-358. doi: 10.1021/acs.biochem.6b01270. Epub 2017 Jan 6.
9
Challenges of ligand identification for riboswitch candidates.
RNA Biol. 2011 Jan-Feb;8(1):5-10. doi: 10.4161/rna.8.1.13865. Epub 2011 Jan 1.
10
Biochemical Validation of a Third Guanidine Riboswitch Class in Bacteria.
Biochemistry. 2017 Jan 17;56(2):359-363. doi: 10.1021/acs.biochem.6b01271. Epub 2017 Jan 6.

引用本文的文献

1
Comprehensive datasets for RNA design, machine learning, and beyond.
Sci Rep. 2025 Jul 1;15(1):21417. doi: 10.1038/s41598-025-07041-2.
2
A Cyanobacteria-Derived RNA Aptamer Resensitizes Prostate Cancer to Hormone Therapy.
Cancer Res. 2025 Jul 15;85(14):2714-2725. doi: 10.1158/0008-5472.CAN-24-4039.
3
Linker-Mediated Inactivation of the SAM-II Domain in the Tandem SAM-II/SAM-V Riboswitch.
Int J Mol Sci. 2024 Oct 20;25(20):11288. doi: 10.3390/ijms252011288.
4
SAM-VI Riboswitch Conformation Change Requires Peripheral Helix Formation.
Biomolecules. 2024 Jun 23;14(7):742. doi: 10.3390/biom14070742.
5
Riboswitches, from cognition to transformation.
Synth Syst Biotechnol. 2023 Jun 3;8(3):357-370. doi: 10.1016/j.synbio.2023.05.008. eCollection 2023 Sep.
6
Architectures and complex functions of tandem riboswitches.
RNA Biol. 2022 Jan;19(1):1059-1076. doi: 10.1080/15476286.2022.2119017.
7
The Biochemical Landscape of Riboswitch Ligands.
Biochemistry. 2022 Feb 1;61(3):137-149. doi: 10.1021/acs.biochem.1c00765. Epub 2022 Jan 24.
8
ProtSeq: Toward high-throughput, single-molecule protein sequencing via amino acid conversion into DNA barcodes.
iScience. 2021 Dec 11;25(1):103586. doi: 10.1016/j.isci.2021.103586. eCollection 2022 Jan 21.
9
Highly selective and sensitive detection of glutamate by an electrochemical aptasensor.
Anal Bioanal Chem. 2022 Feb;414(4):1609-1622. doi: 10.1007/s00216-021-03783-w. Epub 2021 Nov 16.
10
Riboswitch Mechanisms: New Tricks for an Old Dog.
Biochemistry (Mosc). 2021 Aug;86(8):962-975. doi: 10.1134/S0006297921080071.

本文引用的文献

1
Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes.
Genome Biol. 2010;11(3):R31. doi: 10.1186/gb-2010-11-3-r31. Epub 2010 Mar 15.
2
Riboswitch-mediated control of gene expression in eukaryotes.
RNA Biol. 2010 Jan-Feb;7(1):67-76. doi: 10.4161/rna.7.1.10489. Epub 2010 Jan 1.
4
Structural basis of ligand binding by a c-di-GMP riboswitch.
Nat Struct Mol Biol. 2009 Dec;16(12):1218-23. doi: 10.1038/nsmb.1702. Epub 2009 Nov 8.
5
Riboswitches: from ancient gene-control systems to modern drug targets.
Future Microbiol. 2009 Sep;4(7):771-3. doi: 10.2217/fmb.09.46.
6
Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli.
Nat Chem Biol. 2009 Aug;5(8):593-9. doi: 10.1038/nchembio.186. Epub 2009 Jun 28.
7
Finding non-coding RNAs through genome-scale clustering.
J Bioinform Comput Biol. 2009 Apr;7(2):373-88. doi: 10.1142/s0219720009004126.
8
The structural and functional diversity of metabolite-binding riboswitches.
Annu Rev Biochem. 2009;78:305-34. doi: 10.1146/annurev.biochem.78.070507.135656.
9
Expanding roles for metabolite-sensing regulatory RNAs.
Curr Opin Microbiol. 2009 Apr;12(2):161-9. doi: 10.1016/j.mib.2009.01.012. Epub 2009 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验