Suppr超能文献

用于预测乳腺癌转移的基因表达谱:分类方法的跨研究比较

Gene expression profiles for predicting metastasis in breast cancer: a cross-study comparison of classification methods.

作者信息

Burton Mark, Thomassen Mads, Tan Qihua, Kruse Torben A

机构信息

Research Unit of Human Genetics, Institute of Clinical Research, University of Southern Denmark, Sdr. Boulevard 29, 5000 Odense C, Denmark.

出版信息

ScientificWorldJournal. 2012;2012:380495. doi: 10.1100/2012/380495. Epub 2012 Nov 28.

Abstract

Machine learning has increasingly been used with microarray gene expression data and for the development of classifiers using a variety of methods. However, method comparisons in cross-study datasets are very scarce. This study compares the performance of seven classification methods and the effect of voting for predicting metastasis outcome in breast cancer patients, in three situations: within the same dataset or across datasets on similar or dissimilar microarray platforms. Combining classification results from seven classifiers into one voting decision performed significantly better during internal validation as well as external validation in similar microarray platforms than the underlying classification methods. When validating between different microarray platforms, random forest, another voting-based method, proved to be the best performing method. We conclude that voting based classifiers provided an advantage with respect to classifying metastasis outcome in breast cancer patients.

摘要

机器学习越来越多地用于微阵列基因表达数据,并通过多种方法开发分类器。然而,跨研究数据集的方法比较非常少见。本研究比较了七种分类方法的性能以及投票对预测乳腺癌患者转移结果的影响,这三种情况分别为:在同一数据集中,或在相似或不同微阵列平台的数据集之间。在内部验证以及相似微阵列平台的外部验证过程中,将七个分类器的分类结果合并为一个投票决策的表现明显优于基础分类方法。在不同微阵列平台之间进行验证时,另一种基于投票的方法——随机森林,被证明是性能最佳的方法。我们得出结论,基于投票的分类器在对乳腺癌患者的转移结果进行分类方面具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c43/3515909/dfb233f8bfee/TSWJ2012-380495.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验