Djebbari Amira, Liu Ziying, Phan Sieu, Famili Fazel
Knowledge Discovery, Institute for Information Technology, National Research Council Canada, 46 Dineen Drive, Fredericton, NB E3B 9W4, Canada.
Int J Comput Biol Drug Des. 2008;1(3):275-94. doi: 10.1504/ijcbdd.2008.021422.
Current breast cancer predictive signatures are not unique. Can we use this fact to our advantage to improve prediction? From the machine learning perspective, it is well known that combining multiple classifiers can improve classification performance. We propose an ensemble machine learning approach which consists of choosing feature subsets and learning predictive models from them. We then combine models based on certain model fusion criteria and we also introduce a tuning parameter to control sensitivity. Our method significantly improves classification performance with a particular emphasis on sensitivity which is critical to avoid misclassifying poor prognosis patients as good prognosis.
当前的乳腺癌预测特征并非独一无二。我们能否利用这一事实来提高预测效果呢?从机器学习的角度来看,众所周知,组合多个分类器可以提高分类性能。我们提出了一种集成机器学习方法,该方法包括选择特征子集并从中学习预测模型。然后,我们根据特定的模型融合标准组合模型,并且还引入了一个调整参数来控制敏感性。我们的方法显著提高了分类性能,尤其强调了敏感性,这对于避免将预后不良的患者误分类为预后良好至关重要。