Suppr超能文献

盐胁迫通过钙依赖性蛋白激酶(CDPKs)触发拟南芥液泡钾通道 TPK1 的磷酸化。

Salt stress triggers phosphorylation of the Arabidopsis vacuolar K+ channel TPK1 by calcium-dependent protein kinases (CDPKs).

机构信息

Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany.

Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria.

出版信息

Mol Plant. 2013 Jul;6(4):1274-1289. doi: 10.1093/mp/sss158. Epub 2012 Dec 19.

Abstract

14-3-3 proteins play an important role in the regulation of many cellular processes. The Arabidopsis vacuolar two-pore K(+) channel 1 (TPK1) interacts with the 14-3-3 protein GRF6 (GF14-λ). Upon phosphorylation of the putative binding motif in the N-terminus of TPK1, GRF6 binds to TPK1 and activates the potassium channel. In order to gain a deeper understanding of this 14-3-3-mediated signal transduction, we set out to identify the respective kinases, which regulate the phosphorylation status of the 14-3-3 binding motif in TPK1. Here, we report that the calcium-dependent protein kinases (CDPKs) can phosphorylate and thereby activate the 14-3-3 binding motif in TPK1. Focusing on the stress-activated kinase CPK3, we visualized direct and specific interaction of TPK1 with the kinase at the tonoplast in vivo. In line with its proposed role in K(+) homeostasis, TPK1 phosphorylation was found to be induced by salt stress in planta, and both cpk3 and tpk1 mutants displayed salt-sensitive phenotypes. Molecular modeling of the TPK1-CPK3 interaction domain provided mechanistic insights into TPK1 stress-regulated phosphorylation responses and pinpointed two arginine residues in the N-terminal 14-3-3 binding motif in TPK1 critical for kinase interaction. Taken together, our studies provide evidence for an essential role of the vacuolar potassium channel TPK1 in salt-stress adaptation as a target of calcium-regulated stress signaling pathways involving Ca(2+), Ca(2+)-dependent kinases, and 14-3-3 proteins.

摘要

14-3-3 蛋白在许多细胞过程的调节中发挥重要作用。拟南芥液泡双孔钾 (K+) 通道 1 (TPK1) 与 14-3-3 蛋白 GRF6 (GF14-λ) 相互作用。在 TPK1 氨基末端假定结合基序磷酸化后,GRF6 与 TPK1 结合并激活钾通道。为了更深入地了解这种 14-3-3 介导的信号转导,我们着手鉴定分别调节 TPK1 中 14-3-3 结合基序磷酸化状态的激酶。在这里,我们报告钙依赖性蛋白激酶 (CDPKs) 可以磷酸化并激活 TPK1 中的 14-3-3 结合基序。我们专注于应激激活激酶 CPK3,在体内观察到 TPK1 与液泡膜上激酶的直接和特异性相互作用。与 K(+) 稳态中的拟议作用一致,发现 TPK1 磷酸化是由植物体内盐胁迫诱导的,并且 cpk3 和 tpk1 突变体都表现出盐敏感表型。TPK1-CPK3 相互作用结构域的分子建模提供了对 TPK1 应激调节磷酸化反应的机制见解,并确定了 TPK1 中氨基末端 14-3-3 结合基序中的两个精氨酸残基对于激酶相互作用至关重要。总之,我们的研究为液泡钾通道 TPK1 在盐胁迫适应中的重要作用提供了证据,作为涉及 Ca2+、Ca2+-依赖性激酶和 14-3-3 蛋白的钙调节应激信号通路的靶标。

相似文献

2
TPK1, a Ca(2+)-regulated Arabidopsis vacuole two-pore K(+) channel is activated by 14-3-3 proteins.
Plant J. 2007 Nov;52(3):449-59. doi: 10.1111/j.1365-313X.2007.03255.x. Epub 2007 Aug 31.
3
KIN7 Kinase Regulates the Vacuolar TPK1 K Channel during Stomatal Closure.
Curr Biol. 2018 Feb 5;28(3):466-472.e4. doi: 10.1016/j.cub.2017.12.046. Epub 2018 Jan 27.
4
The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis.
Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10726-31. doi: 10.1073/pnas.0702595104. Epub 2007 Jun 11.
5
Targeting of vacuolar membrane localized members of the TPK channel family.
Mol Plant. 2008 Nov;1(6):938-49. doi: 10.1093/mp/ssn064.
6
Assembly and sorting of the tonoplast potassium channel AtTPK1 and its turnover by internalization into the vacuole.
Plant Physiol. 2011 Aug;156(4):1783-96. doi: 10.1104/pp.111.177816. Epub 2011 Jun 22.
7
TPK1 is a vacuolar ion channel different from the slow-vacuolar cation channel.
Plant Physiol. 2005 Sep;139(1):417-24. doi: 10.1104/pp.105.065599. Epub 2005 Aug 19.
8
The Ca(2+) -dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis.
Plant J. 2010 Aug;63(3):484-98. doi: 10.1111/j.1365-313X.2010.04257.x. Epub 2010 May 20.
9
Allelic variation in the vacuolar TPK1 channel affects its calcium dependence and may impact on stomatal conductance.
FEBS Lett. 2016 Jan;590(1):110-7. doi: 10.1002/1873-3468.12035. Epub 2015 Dec 29.

引用本文的文献

4
Omics-Driven Strategies for Developing Saline-Smart Lentils: A Comprehensive Review.
Int J Mol Sci. 2024 Oct 22;25(21):11360. doi: 10.3390/ijms252111360.
8
Ion Changes and Signaling under Salt Stress in Wheat and Other Important Crops.
Plants (Basel). 2023 Dec 22;13(1):46. doi: 10.3390/plants13010046.
9
Genome-wide identification and expression analysis of the glutamate receptor gene family in sweet potato and its two diploid relatives.
Front Plant Sci. 2023 Dec 21;14:1255805. doi: 10.3389/fpls.2023.1255805. eCollection 2023.
10
OsCPK12 phosphorylates OsCATA and OsCATC to regulate HO homeostasis and improve oxidative stress tolerance in rice.
Plant Commun. 2024 Mar 11;5(3):100780. doi: 10.1016/j.xplc.2023.100780. Epub 2023 Dec 21.

本文引用的文献

1
Ion channels in plants.
Physiol Rev. 2012 Oct;92(4):1777-811. doi: 10.1152/physrev.00038.2011.
3
14-3-3 phosphoprotein interaction networks - does isoform diversity present functional interaction specification?
Front Plant Sci. 2012 Aug 20;3:190. doi: 10.3389/fpls.2012.00190. eCollection 2012.
4
Multiple calcium-dependent kinases modulate ABA-activated guard cell anion channels.
Mol Plant. 2012 Nov;5(6):1409-12. doi: 10.1093/mp/sss084. Epub 2012 Aug 29.
5
Calcium-dependent protein kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates.
Front Plant Sci. 2011 Aug 30;2:36. doi: 10.3389/fpls.2011.00036. eCollection 2011.
7
The role of a 14-3-3 protein in stomatal opening mediated by PHOT2 in Arabidopsis.
Plant Cell. 2012 Mar;24(3):1114-26. doi: 10.1105/tpc.111.092130. Epub 2012 Mar 9.
9
A novel calcium binding site in the slow vacuolar cation channel TPC1 senses luminal calcium levels.
Plant Cell. 2011 Jul;23(7):2696-707. doi: 10.1105/tpc.111.086751. Epub 2011 Jul 15.
10
Protein kinase signaling networks in plant innate immunity.
Curr Opin Plant Biol. 2011 Oct;14(5):519-29. doi: 10.1016/j.pbi.2011.05.006. Epub 2011 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验