Suppr超能文献

整合转录组学、蛋白质组学和代谢组学分析揭示了大豆(Glycine max (L.) Merr.)幼苗耐盐性的分子机制。

Integrated Transcriptomic, Proteomic, and Metabolomic Analyses Revealed Molecular Mechanism for Salt Resistance in Soybean ( L.) Seedlings.

作者信息

Fu Siqi, Wang Lu, Li Chunqian, Zhao Yinhui, Zhang Nan, Yan Lei, Li Chang Ming, Niu Yusheng

机构信息

Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.

Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.

出版信息

Int J Mol Sci. 2024 Dec 18;25(24):13559. doi: 10.3390/ijms252413559.

Abstract

Salt stress poses a significant challenge to plant growth and restricts agricultural development. To delve into the intricate mechanisms involved in soybean's response to salt stress and find targets to improve the salt resistance of soybean, this study integrated transcriptomic, proteomic, and metabolomic analyses to explore the regulatory networks involved in soybean salt tolerance. Transcriptomic analysis revealed significant changes in transcription factors, hormone-related groups, and calcium ion signaling. Notably, the biosynthetic pathways of cutin, suberine, and wax biosynthesis play an important role in this process. Proteomic results indicated salt-induced DNA methylation and the enrichment of phosphopyruvate hydrase post-salt stress, as well as its interaction with enzymes from various metabolic pathways. Metabolomic data unveiled the synthesis of various metabolites, including lipids and flavonoids, in soybean following salt stress. Furthermore, the integrated multiomics results highlighted the activation of multiple metabolic pathways in soybean in response to salt stress, with six pathways standing out prominently: stilbenoid, diarylheptanoid, and gingerol biosynthesis; carotenoid biosynthesis; carbon fixation in photosynthetic organisms; alanine, aspartate, and glutamate metabolism; thiamine metabolism; and pyruvate metabolism. These findings not only offer valuable insights into leveraging multiomics profiling techniques for uncovering salt tolerance mechanisms but also identify candidate genes for soybean improvement.

摘要

盐胁迫对植物生长构成重大挑战,并限制农业发展。为深入探究大豆对盐胁迫响应的复杂机制并找到提高大豆耐盐性的靶点,本研究整合了转录组学、蛋白质组学和代谢组学分析,以探索参与大豆耐盐性的调控网络。转录组分析揭示了转录因子、激素相关组和钙离子信号传导的显著变化。值得注意的是,角质、木栓质和蜡质生物合成途径在这一过程中发挥重要作用。蛋白质组学结果表明盐诱导的DNA甲基化以及盐胁迫后磷酸丙酮酸水解酶的富集,以及它与来自各种代谢途径的酶的相互作用。代谢组学数据揭示了盐胁迫后大豆中各种代谢物的合成,包括脂质和类黄酮。此外,整合的多组学结果突出了大豆中多个代谢途径在响应盐胁迫时的激活,其中六个途径尤为突出:芪类、二芳基庚烷类和姜辣素生物合成;类胡萝卜素生物合成;光合生物中的碳固定;丙氨酸、天冬氨酸和谷氨酸代谢;硫胺素代谢;以及丙酮酸代谢。这些发现不仅为利用多组学分析技术揭示耐盐机制提供了有价值的见解,还为大豆改良鉴定了候选基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad77/11678865/312102a8497a/ijms-25-13559-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验