Suppr超能文献

负荷依赖型重塑过程中胚胎左心室的应力和应变适应。

Stress and strain adaptation in load-dependent remodeling of the embryonic left ventricle.

机构信息

Department of Mechanical Engineering, Bucknell University, One Dent Drive, Lewisburg, PA, 17837, USA,

出版信息

Biomech Model Mechanobiol. 2013 Oct;12(5):1037-51. doi: 10.1007/s10237-012-0461-0. Epub 2012 Dec 20.

Abstract

Altered pressure in the developing left ventricle (LV) results in altered morphology and tissue material properties. Mechanical stress and strain may play a role in the regulating process. This study showed that confocal microscopy, three-dimensional reconstruction, and finite element analysis can provide a detailed model of stress and strain in the trabeculated embryonic heart. The method was used to test the hypothesis that end-diastolic strains are normalized after altered loading of the LV during the stages of trabecular compaction and chamber formation. Stage-29 chick LVs subjected to pressure overload and underload at stage 21 were reconstructed with full trabecular morphology from confocal images and analyzed with finite element techniques. Measured material properties and intraventricular pressures were specified in the models. The results show volume-weighted end-diastolic von Mises stress and strain averaging 50-82 % higher in the trabecular tissue than in the compact wall. The volume-weighted-average stresses for the entire LV were 115, 64, and 147 Pa in control, underloaded, and overloaded models, while strains were 11, 7, and 4 %; thus, neither was normalized in a volume-weighted sense. Localized epicardial strains at mid-longitudinal level were similar among the three groups and to strains measured from high-resolution ultrasound images. Sensitivity analysis showed changes in material properties are more significant than changes in geometry in the overloaded strain adaptation, although resulting stress was similar in both types of adaptation. These results emphasize the importance of appropriate metrics and the role of trabecular tissue in evaluating the evolution of stress and strain in relation to pressure-induced adaptation.

摘要

左心室(LV)发育过程中压力的改变会导致形态和组织材料特性的改变。机械应力和应变可能在调节过程中发挥作用。本研究表明,共聚焦显微镜、三维重建和有限元分析可以为小梁化胚胎心脏的应力和应变提供详细模型。该方法用于测试以下假设:LV 在小梁化和心室形成阶段受到改变的负荷后,舒张末期应变得到了归一化。在第 21 阶段对第 29 阶段鸡的 LV 施加压力过载和欠载,使用共聚焦图像重建具有完整小梁形态的 LV,并使用有限元技术进行分析。在模型中指定了测量的材料特性和室内压力。结果表明,小梁组织中的体积加权舒张末期 von Mises 应力和应变比致密壁中的平均高 50-82%。在对照、欠载和过载模型中,整个 LV 的体积加权平均应力分别为 115、64 和 147 Pa,应变分别为 11、7 和 4%;因此,从体积加权的意义上讲,均未归一化。三组之间的中部-纵向水平的局部心外膜应变相似,与高分辨率超声图像测量的应变相似。敏感性分析表明,在过载应变适应中,材料特性的变化比几何形状的变化更重要,尽管在这两种适应中,产生的应力相似。这些结果强调了适当的指标的重要性以及小梁组织在评估与压力诱导适应相关的应力和应变演变中的作用。

相似文献

1
Stress and strain adaptation in load-dependent remodeling of the embryonic left ventricle.
Biomech Model Mechanobiol. 2013 Oct;12(5):1037-51. doi: 10.1007/s10237-012-0461-0. Epub 2012 Dec 20.
2
Regional passive ventricular stress-strain relations during development of altered loads in chick embryo.
Am J Physiol Heart Circ Physiol. 2002 Jun;282(6):H2386-96. doi: 10.1152/ajpheart.00879.2001.
3
Pressure overload alters stress-strain properties of the developing chick heart.
Am J Physiol Heart Circ Physiol. 2003 Nov;285(5):H1849-56. doi: 10.1152/ajpheart.00384.2002. Epub 2003 Jul 10.
4
Theoretical and experimental study of growth and remodeling in the developing heart.
Biomech Model Mechanobiol. 2002 Jun;1(1):29-43. doi: 10.1007/s10237-002-0002-3.
5
Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.
Biomed Mater Eng. 2016 Nov 25;27(5):507-525. doi: 10.3233/BME-161604.
6
Three-dimensional myofiber architecture of the embryonic left ventricle during normal development and altered mechanical loads.
Anat Rec A Discov Mol Cell Evol Biol. 2005 Mar;283(1):193-201. doi: 10.1002/ar.a.20133.
7
Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions.
Anat Rec. 1999 Feb 1;254(2):238-52. doi: 10.1002/(SICI)1097-0185(19990201)254:2<238::AID-AR10>3.0.CO;2-V.
8
Microtubule involvement in the adaptation to altered mechanical load in developing chick myocardium.
Circ Res. 2002 Aug 23;91(4):353-9. doi: 10.1161/01.res.0000030179.78135.fa.
9
Passive ventricular constraint prevents transmural shear strain progression in left ventricle remodeling.
Circulation. 2006 Jul 4;114(1 Suppl):I79-86. doi: 10.1161/CIRCULATIONAHA.105.001578.

引用本文的文献

1
Fibrosis and expression of extracellular matrix proteins in human interventricular septum in aortic valve stenosis and regurgitation.
Histochem Cell Biol. 2024 May;161(5):367-379. doi: 10.1007/s00418-024-02268-y. Epub 2024 Feb 12.
2
The changing morphology of the ventricular walls of mouse and human with increasing gestation.
J Anat. 2024 Jun;244(6):1040-1053. doi: 10.1111/joa.14017. Epub 2024 Jan 29.
3
Soft-Tissue Material Properties and Mechanogenetics during Cardiovascular Development.
J Cardiovasc Dev Dis. 2022 Feb 21;9(2):64. doi: 10.3390/jcdd9020064.
4
Tissue clearing and imaging methods for cardiovascular development.
iScience. 2021 Apr 1;24(4):102387. doi: 10.1016/j.isci.2021.102387. eCollection 2021 Apr 23.
8
Trabecular Architecture Determines Impulse Propagation Through the Early Embryonic Mouse Heart.
Front Physiol. 2019 Jan 8;9:1876. doi: 10.3389/fphys.2018.01876. eCollection 2018.
9
Myocardial wall stiffening in a mouse model of persistent truncus arteriosus.
PLoS One. 2017 Sep 29;12(9):e0184678. doi: 10.1371/journal.pone.0184678. eCollection 2017.
10
Blood flow mechanics in cardiovascular development.
Cell Mol Life Sci. 2015 Jul;72(13):2545-59. doi: 10.1007/s00018-015-1885-3. Epub 2015 Mar 24.

本文引用的文献

1
Patterns of muscular strain in the embryonic heart wall.
Dev Dyn. 2009 Jun;238(6):1535-46. doi: 10.1002/dvdy.21958.
2
Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart.
J R Soc Interface. 2010 Jan 6;7(42):91-103. doi: 10.1098/rsif.2009.0063. Epub 2009 Apr 28.
3
High-frequency ultrasonographic imaging of avian cardiovascular development.
Dev Dyn. 2007 Dec;236(12):3503-13. doi: 10.1002/dvdy.21357.
4
Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart.
Anat Rec (Hoboken). 2007 Sep;290(9):1057-68. doi: 10.1002/ar.20575.
6
Increased ventricular preload is compensated by myocyte proliferation in normal and hypoplastic fetal chick left ventricle.
Circ Res. 2007 May 11;100(9):1363-70. doi: 10.1161/01.RES.0000266606.88463.cb. Epub 2007 Apr 5.
7
Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures.
Am J Physiol Heart Circ Physiol. 2006 Apr;290(4):H1313-25. doi: 10.1152/ajpheart.00816.2005.
8
Confocal imaging of the embryonic heart: how deep?
Microsc Microanal. 2005 Jun;11(3):216-23. doi: 10.1017/S1431927605050464.
9
Reference guide to the stages of chick heart embryology.
Dev Dyn. 2005 Aug;233(4):1217-37. doi: 10.1002/dvdy.20468.
10
Three-dimensional myofiber architecture of the embryonic left ventricle during normal development and altered mechanical loads.
Anat Rec A Discov Mol Cell Evol Biol. 2005 Mar;283(1):193-201. doi: 10.1002/ar.a.20133.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验