Suppr超能文献

应用磁共振化学位移水脂成像技术对人体棕色脂肪组织进行特征分析。

Characterization of human brown adipose tissue by chemical-shift water-fat MRI.

机构信息

Department of Radiology, Children's Hospital Los Angeles, 4650 Sunset Blvd, MS #81, Los Angeles, California 90027, USA.

出版信息

AJR Am J Roentgenol. 2013 Jan;200(1):177-83. doi: 10.2214/AJR.12.8996.

Abstract

OBJECTIVE

The purpose of this study was to characterize human brown adipose tissue (BAT) with chemical-shift water-fat MRI and to determine whether trends and differences in fat-signal fractions and T2(*) relaxation times between BAT and white adipose tissue (WAT) are consistently observed postmortem and in vivo in infants, adolescents, and adults.

MATERIALS AND METHODS

A postmortem body and eight patients were studied. A six-echo spoiled gradient-echo chemical-shift water-fat MRI sequence was performed at 3 T to jointly quantify fat-signal fraction and T2(*) in interscapular-supraclavicular BAT and subcutaneous WAT. To confirm BAT identity, biopsy and histology served as the reference in the postmortem study and PET/CT was used in five of the eight patients who required examination for medical care.

RESULTS

Fat-signal fractions and T2(*) times were lower in BAT than in WAT in the postmortem example and in seven of eight patients. With the exception of one case, nominal comparisons between brown and white adipose tissues were statistically significant (p < 0.05). Between subjects, a large range of fat-signal fraction values was observed in BAT but not in WAT.

CONCLUSION

We have shown that fat-signal fractions and T2(*) values jointly derived from chemical-shift water-fat MRI are lower in BAT than in WAT likely because of differences in cellular structures, triglyceride content, and vascularization. The two metrics can serve as complementary biomarkers in the detection of BAT.

摘要

目的

本研究旨在利用化学位移水脂 MRI 对人体棕色脂肪组织(BAT)进行特征描述,并确定 BAT 和白色脂肪组织(WAT)之间的脂肪信号分数和 T2(*)弛豫时间趋势和差异是否在死后和体内的婴儿、青少年和成年人中一致观察到。

材料与方法

对一具尸体和八名患者进行了研究。在 3T 上进行了六回波扰相梯度回波化学位移水脂 MRI 序列,以联合定量肩胛颈上 BAT 和皮下 WAT 的脂肪信号分数和 T2(*)。为了确认 BAT 的身份,活检和组织学作为尸体研究的参考,而在需要医疗检查的八名患者中的五名中使用了 PET/CT。

结果

在尸体标本和八名患者中的七名中,BAT 的脂肪信号分数和 T2(*)时间均低于 WAT。除了一个病例外,棕色和白色脂肪组织之间的名义比较均具有统计学意义(p<0.05)。在受试者之间,BAT 中观察到脂肪信号分数值的范围很大,但 WAT 中则没有。

结论

我们已经表明,联合源自化学位移水脂 MRI 的脂肪信号分数和 T2(*)值在 BAT 中低于 WAT,这可能是由于细胞结构、甘油三酯含量和血管化的差异所致。这两个指标可以作为 BAT 检测的互补生物标志物。

相似文献

1
Characterization of human brown adipose tissue by chemical-shift water-fat MRI.
AJR Am J Roentgenol. 2013 Jan;200(1):177-83. doi: 10.2214/AJR.12.8996.
2
Quantification of brown and white adipose tissue based on Gaussian mixture model using water-fat and T2* MRI in adolescents.
J Magn Reson Imaging. 2017 Sep;46(3):758-768. doi: 10.1002/jmri.25632. Epub 2017 Jan 16.
3
4
Comparison of brown and white adipose tissues in infants and children with chemical-shift-encoded water-fat MRI.
J Magn Reson Imaging. 2013 Oct;38(4):885-96. doi: 10.1002/jmri.24053. Epub 2013 Feb 25.
5
MR signal-fat-fraction analysis and T2* weighted imaging measure BAT reliably on humans without cold exposure.
Metabolism. 2017 May;70:23-30. doi: 10.1016/j.metabol.2017.02.001. Epub 2017 Feb 8.
10
MRI detection of brown adipose tissue with low fat content in newborns with hypothermia.
Magn Reson Imaging. 2014 Feb;32(2):107-17. doi: 10.1016/j.mri.2013.10.003. Epub 2013 Oct 15.

引用本文的文献

4
Lower brown adipose tissue activity is associated with non-alcoholic fatty liver disease but not changes in the gut microbiota.
Cell Rep Med. 2021 Sep 14;2(9):100397. doi: 10.1016/j.xcrm.2021.100397. eCollection 2021 Sep 21.
5
Practical application of in vivo MRI-based brown adipose tissue measurements in infants.
Obesity (Silver Spring). 2021 Oct;29(10):1676-1683. doi: 10.1002/oby.23237.
6
PET/MRI of glucose metabolic rate, lipid content and perfusion in human brown adipose tissue.
Sci Rep. 2021 Jul 22;11(1):14955. doi: 10.1038/s41598-021-87768-w.
7
Brown Adipose Tissue, Adiposity, and Metabolic Profile in Preschool Children.
J Clin Endocrinol Metab. 2021 Sep 27;106(10):2901-2914. doi: 10.1210/clinem/dgab447.
8
[Comparison of H-MRS, Dixon fat-water separation and Z-spectral imaging for quantification of brown adipose tissue in rats].
Nan Fang Yi Ke Da Xue Xue Bao. 2021 May 20;41(5):783-788. doi: 10.12122/j.issn.1673-4254.2021.05.21.
9
Magnetic Resonance Imaging for Drug Development.
Adv Exp Med Biol. 2021;1310:187-209. doi: 10.1007/978-981-33-6064-8_9.

本文引用的文献

1
Medicine. Irisin, light my fire.
Science. 2012 Apr 6;336(6077):42-3. doi: 10.1126/science.1221688.
3
A diurnal rhythm in glucose uptake in brown adipose tissue revealed by in vivo PET-FDG imaging.
Obesity (Silver Spring). 2012 Jul;20(7):1527-9. doi: 10.1038/oby.2012.78. Epub 2012 Mar 26.
4
Anatomical and functional assessment of brown adipose tissue by magnetic resonance imaging.
Obesity (Silver Spring). 2012 Jul;20(7):1519-26. doi: 10.1038/oby.2012.22. Epub 2012 Feb 20.
5
Variations in T(2)* and fat content of murine brown and white adipose tissues by chemical-shift MRI.
Magn Reson Imaging. 2012 Apr;30(3):323-9. doi: 10.1016/j.mri.2011.12.004. Epub 2012 Jan 13.
7
Detecting brown adipose tissue activity with BOLD MRI in mice.
Magn Reson Med. 2012 Oct;68(4):1285-90. doi: 10.1002/mrm.24118. Epub 2012 Jan 9.
8
Unequivocal identification of brown adipose tissue in a human infant.
J Magn Reson Imaging. 2012 Apr;35(4):938-42. doi: 10.1002/jmri.23531. Epub 2011 Dec 16.
9
Validation of MRI biomarkers of hepatic steatosis in the presence of iron overload in the ob/ob mouse.
J Magn Reson Imaging. 2012 Apr;35(4):844-51. doi: 10.1002/jmri.22890. Epub 2011 Nov 29.
10
Quantitative Assessment of Liver Fat with Magnetic Resonance Imaging and Spectroscopy.
J Magn Reson Imaging. 2011 Oct;34(4):729-749. doi: 10.1002/jmri.22775. Epub 2011 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验