Suppr超能文献

计算机辅助诊断在胸部和结肠成像中的应用综述。

A review of computer-aided diagnosis in thoracic and colonic imaging.

机构信息

Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.

出版信息

Quant Imaging Med Surg. 2012 Sep;2(3):163-76. doi: 10.3978/j.issn.2223-4292.2012.09.02.

Abstract

Medical imaging has been indispensable in medicine since the discovery of x-rays. Medical imaging offers useful information on patients' medical conditions and on the causes of their symptoms and diseases. As imaging technologies advance, a large number of medical images are produced which physicians/radiologists must interpret. Thus, computer aids are demanded and become indispensable in physicians' decision making based on medical images. Consequently, computer-aided detection and diagnosis (CAD) has been investigated and has been an active research area in medical imaging. CAD is defined as detection and/or diagnosis made by a radiologist/physician who takes into account the computer output as a "second opinion". In CAD research, detection and diagnosis of lung and colorectal cancer in thoracic and colonic imaging constitute major areas, because lung and colorectal cancers are the leading and second leading causes, respectively, of cancer deaths in the U.S. and also in other countries. In this review, CAD of the thorax and colon, including CAD for detection and diagnosis of lung nodules in thoracic CT, and that for detection of polyps in CT colonography, are reviewed.

摘要

自发现 X 射线以来,医学成像在医学中一直不可或缺。医学成像为患者的病情以及症状和疾病的病因提供了有用的信息。随着成像技术的进步,产生了大量的医学图像,医生/放射科医生必须对其进行解释。因此,需要计算机辅助,并成为医生基于医学图像做出决策不可或缺的手段。因此,计算机辅助检测和诊断(CAD)已被研究,并成为医学成像中的一个活跃研究领域。CAD 的定义是放射科医生/医生进行的检测和/或诊断,他们将计算机输出视为“第二意见”。在 CAD 研究中,胸部和结肠成像中的肺癌和结直肠癌的检测和诊断构成了主要领域,因为肺癌和结直肠癌分别是美国和其他国家癌症死亡的主要和第二大原因。在本次综述中,对胸部和结肠的 CAD 进行了综述,包括胸部 CT 中肺结节的检测和诊断以及 CT 结肠成像中息肉的检测。

相似文献

1
A review of computer-aided diagnosis in thoracic and colonic imaging.
Quant Imaging Med Surg. 2012 Sep;2(3):163-76. doi: 10.3978/j.issn.2223-4292.2012.09.02.
2
Machine Learning in Computer-aided Diagnosis of the Thorax and Colon in CT: A Survey.
IEICE Trans Inf Syst. 2013 Apr 1;E96-D(4):772-783. doi: 10.1587/transinf.e96.d.772.
3
Computer-aided diagnosis in thoracic CT.
Semin Ultrasound CT MR. 2005 Oct;26(5):357-63. doi: 10.1053/j.sult.2005.07.001.
5
Recent progress in computer-aided diagnosis of lung nodules on thin-section CT.
Comput Med Imaging Graph. 2007 Jun-Jul;31(4-5):248-57. doi: 10.1016/j.compmedimag.2007.02.005. Epub 2007 Mar 21.
7
Computer-aided diagnosis in medical imaging: historical review, current status and future potential.
Comput Med Imaging Graph. 2007 Jun-Jul;31(4-5):198-211. doi: 10.1016/j.compmedimag.2007.02.002. Epub 2007 Mar 8.
8
Computer-aided diagnosis for CT colonography.
Semin Ultrasound CT MR. 2004 Oct;25(5):419-31. doi: 10.1053/j.sult.2004.07.002.
9
Colonic polyps: complementary role of computer-aided detection in CT colonography.
Radiology. 2002 Nov;225(2):391-9. doi: 10.1148/radiol.2252011619.

引用本文的文献

1
Subgroup evaluation to understand performance gaps in deep learning-based classification of regions of interest on mammography.
PLOS Digit Health. 2025 Apr 8;4(4):e0000811. doi: 10.1371/journal.pdig.0000811. eCollection 2025 Apr.
3
Real time anatomical landmarks and abnormalities detection in gastrointestinal tract.
PeerJ Comput Sci. 2023 Dec 19;9:e1685. doi: 10.7717/peerj-cs.1685. eCollection 2023.
5
Automated Detection and Characterization of Colon Cancer with Deep Convolutional Neural Networks.
J Healthc Eng. 2022 Aug 24;2022:5269913. doi: 10.1155/2022/5269913. eCollection 2022.
6
Design Optimization of Spatial-Spectral Filters for Cone-Beam CT Material Decomposition.
IEEE Trans Med Imaging. 2022 Sep;41(9):2399-2413. doi: 10.1109/TMI.2022.3164568. Epub 2022 Aug 31.
7
Anomaly Detection of Calcifications in Mammography Based on 11,000 Negative Cases.
IEEE Trans Biomed Eng. 2022 May;69(5):1639-1650. doi: 10.1109/TBME.2021.3126281. Epub 2022 Apr 21.
8
Artificial intelligence and hybrid imaging: the best match for personalized medicine in oncology.
Eur J Hybrid Imaging. 2020 Dec 9;4(1):24. doi: 10.1186/s41824-020-00094-8.
9
[Machine learning and multiparametric MRI for early diagnosis of prostate cancer].
Urologe A. 2021 May;60(5):576-591. doi: 10.1007/s00120-021-01492-x. Epub 2021 Mar 12.
10
.
Sensors (Basel). 2021 Jan 22;21(3):748. doi: 10.3390/s21030748.

本文引用的文献

1
Pixel-based machine learning in medical imaging.
Int J Biomed Imaging. 2012;2012:792079. doi: 10.1155/2012/792079. Epub 2012 Feb 28.
2
A novel computer-aided lung nodule detection system for CT images.
Med Phys. 2011 Oct;38(10):5630-45. doi: 10.1118/1.3633941.
6
Combining Statistical and Geometric Features for Colonic Polyp Detection in CTC Based on Multiple Kernel Learning.
Int J Comput Intell Appl. 2010 Jan 1;9(1):1-15. doi: 10.1142/S1469026810002744.
7
Effect of computer-aided detection for CT colonography in a multireader, multicase trial.
Radiology. 2010 Sep;256(3):827-35. doi: 10.1148/radiol.10091890. Epub 2010 Jul 27.
9
Computer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble construction.
Artif Intell Med. 2010 Sep;50(1):43-53. doi: 10.1016/j.artmed.2010.04.011. Epub 2010 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验