Micro and Nanotechnology Lab, University of Illinois, Urbana-Champaign, Illinois 61801, USA.
Nano Lett. 2013 Feb 13;13(2):464-9. doi: 10.1021/nl3038097. Epub 2013 Jan 11.
A central issue of nanoelectronics concerns their fundamental scaling limits, that is, the smallest and most energy-efficient devices that can function reliably. Unlike charge-based electronics that are prone to leakage at nanoscale dimensions, memory devices based on phase change materials (PCMs) are more scalable, storing digital information as the crystalline or amorphous state of a material. Here, we describe a novel approach to self-align PCM nanowires with individual carbon nanotube (CNT) electrodes for the first time. The highly scaled and spatially confined memory devices approach the ultimate scaling limits of PCM technology, achieving ultralow programming currents (0.1 μA set, ~1.6 μA reset), outstanding on/off ratios (10(3)), and improved endurance and stability at few-nanometer bit dimensions. In addition, the powerful yet simple nanofabrication approach described here can enable confining and probing many other nanoscale and molecular devices self-aligned with CNT electrodes.
一个中心问题的纳米电子学涉及他们的基本的缩放限制,即最小和最节能的设备,可以可靠地工作。不像基于电荷的电子学,容易泄漏在纳米尺寸,基于相变材料(PCM)的存储器件更具可扩展性,存储数字信息的结晶或非晶态的材料。在这里,我们首次描述了一种新的方法来自我对齐 PCM 纳米线与单个碳纳米管(CNT)电极。高度规模化和空间限制的存储器件达到了 PCM 技术的最终缩放限制,实现了超低编程电流(0.1μA 设置,1.6μA 复位),出色的导通/关断比(~10(3)),并提高了在几纳米位尺寸的耐久性和稳定性。此外,这里所描述的强大而简单的纳米制造方法可以实现与 CNT 电极自对准的许多其他纳米级和分子器件的限制和探测。