Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Biophys J. 2012 Dec 19;103(12):2521-31. doi: 10.1016/j.bpj.2012.11.011. Epub 2012 Dec 18.
Light-controlled modification of the fluorescence emission properties of proteins of the GFP family is of crucial importance for many imaging applications including superresolution microscopy. Here, we have studied the reversibly photoswitchable fluorescent protein mIrisGFP using optical spectroscopy. By analyzing the pH dependence of isomerization and protonation equilibria and the isomerization kinetics, we have obtained insight into the coupling of the chromophore to the surrounding protein moiety and a better understanding of the photoswitching mechanism. A different acid-base environment of the chromophore's protonating group in its two isomeric forms, which can be inferred from the x-ray structures of IrisFP, is key to the photoswitching function and ensures that isomerization and protonation are correlated. Amino acids near the chromophore, especially Glu212, rearrange upon isomerization, and Glu212 protonation modulates the chromophore pK(a). In mIrisGFP, the cis chromophore protonates in two steps, with pK(cis) of 5.3 and 6, which is much lower than pK(trans) (>10). Based on these results, we have put forward a mechanistic scheme that explains how the combination of isomeric and acid-base properties of the chromophore in its protein environment can produce negative and positive photoswitching modes.
光控修饰 GFP 家族蛋白的荧光发射性质对于许多成像应用至关重要,包括超分辨率显微镜。在这里,我们使用光谱学研究了可光致变色的荧光蛋白 mIrisGFP。通过分析异构化和质子化平衡以及异构化动力学的 pH 依赖性,我们深入了解了发色团与周围蛋白质部分的偶联,并更好地理解了光致变色机制。从 IrisFP 的 X 射线结构可以推断出,其两种互变异构形式中发色团质子化基团的不同酸碱环境是光致变色功能的关键,确保了异构化和质子化的相关性。在发色团附近的氨基酸,特别是 Glu212,在异构化时会重新排列,而 Glu212 的质子化会调节发色团的 pK(a)。在 mIrisGFP 中,顺式发色团分两步质子化,pK(cis)为 5.3 和 6,远低于 pK(trans)(>10)。基于这些结果,我们提出了一个机制方案,解释了发色团在其蛋白质环境中的互变异构和酸碱性质如何产生负和正光致变色模式。