Suppr超能文献

纳米级细胞结构的光学成像。

Optical imaging of nanoscale cellular structures.

作者信息

Hedde Per Niklas, Nienhaus Gerd Ulrich

机构信息

Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany.

Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

出版信息

Biophys Rev. 2010 Dec;2(4):147-158. doi: 10.1007/s12551-010-0037-0. Epub 2010 Sep 8.

Abstract

Visualization of subcellular structures and their temporal evolution is of utmost importance to understand a vast range of biological processes. Optical microscopy is the method of choice for imaging live cells and tissues; it is minimally invasive, so processes can be observed over extended periods of time without generating artifacts due to intense light irradiation. The use of fluorescence microscopy is advantageous because biomolecules or supramolecular structures of interest can be labeled specifically with fluorophores, so the images reveal information on processes involving only the labeled molecules. The key restriction of optical microscopy is its moderate resolution, which is limited to about half the wavelength of light (∼200 nm) due to fundamental physical laws governing wave optics. Consequently, molecular processes taking place at spatial scales between 1 and 100 nm cannot be studied by regular optical microscopy. In recent years, however, a variety of super-resolution fluorescence microscopy techniques have been developed that circumvent the resolution limitation. Here, we present a brief overview of these techniques and their application to cellular biophysics.

摘要

可视化亚细胞结构及其时间演变对于理解众多生物过程至关重要。光学显微镜是对活细胞和组织进行成像的首选方法;它具有微创性,因此可以长时间观察过程,而不会因强光照射产生伪影。荧光显微镜的使用具有优势,因为感兴趣的生物分子或超分子结构可以用荧光团特异性标记,所以图像揭示了仅涉及标记分子的过程的信息。光学显微镜的关键限制是其适度的分辨率,由于波动光学的基本物理定律,其分辨率限制在光波长的大约一半(约200纳米)。因此,在1到100纳米空间尺度上发生的分子过程无法通过常规光学显微镜进行研究。然而,近年来,已经开发出多种超分辨率荧光显微镜技术,这些技术规避了分辨率限制。在这里,我们简要概述这些技术及其在细胞生物物理学中的应用。

相似文献

1
Optical imaging of nanoscale cellular structures.纳米级细胞结构的光学成像。
Biophys Rev. 2010 Dec;2(4):147-158. doi: 10.1007/s12551-010-0037-0. Epub 2010 Sep 8.
3
From single molecules to life: microscopy at the nanoscale.从单分子到生命:纳米尺度下的显微镜学
Anal Bioanal Chem. 2016 Oct;408(25):6885-911. doi: 10.1007/s00216-016-9781-8. Epub 2016 Sep 9.
9
10

引用本文的文献

3
Luminescent gold nanoclusters for bioimaging applications.用于生物成像应用的发光金纳米团簇。
Beilstein J Nanotechnol. 2020 Mar 30;11:533-546. doi: 10.3762/bjnano.11.42. eCollection 2020.

本文引用的文献

3
Near-isotropic 3D optical nanoscopy with photon-limited chromophores.利用光子受限发色团的近各向同性三维光学纳米显微镜术
Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10068-73. doi: 10.1073/pnas.1004899107. Epub 2010 May 14.
9
Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI).快速、无背景、3D 超分辨率光学波动成像(SOFI)。
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22287-92. doi: 10.1073/pnas.0907866106. Epub 2009 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验