Suppr超能文献

纳米级细胞结构的光学成像。

Optical imaging of nanoscale cellular structures.

作者信息

Hedde Per Niklas, Nienhaus Gerd Ulrich

机构信息

Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany.

Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

出版信息

Biophys Rev. 2010 Dec;2(4):147-158. doi: 10.1007/s12551-010-0037-0. Epub 2010 Sep 8.

Abstract

Visualization of subcellular structures and their temporal evolution is of utmost importance to understand a vast range of biological processes. Optical microscopy is the method of choice for imaging live cells and tissues; it is minimally invasive, so processes can be observed over extended periods of time without generating artifacts due to intense light irradiation. The use of fluorescence microscopy is advantageous because biomolecules or supramolecular structures of interest can be labeled specifically with fluorophores, so the images reveal information on processes involving only the labeled molecules. The key restriction of optical microscopy is its moderate resolution, which is limited to about half the wavelength of light (∼200 nm) due to fundamental physical laws governing wave optics. Consequently, molecular processes taking place at spatial scales between 1 and 100 nm cannot be studied by regular optical microscopy. In recent years, however, a variety of super-resolution fluorescence microscopy techniques have been developed that circumvent the resolution limitation. Here, we present a brief overview of these techniques and their application to cellular biophysics.

摘要

可视化亚细胞结构及其时间演变对于理解众多生物过程至关重要。光学显微镜是对活细胞和组织进行成像的首选方法;它具有微创性,因此可以长时间观察过程,而不会因强光照射产生伪影。荧光显微镜的使用具有优势,因为感兴趣的生物分子或超分子结构可以用荧光团特异性标记,所以图像揭示了仅涉及标记分子的过程的信息。光学显微镜的关键限制是其适度的分辨率,由于波动光学的基本物理定律,其分辨率限制在光波长的大约一半(约200纳米)。因此,在1到100纳米空间尺度上发生的分子过程无法通过常规光学显微镜进行研究。然而,近年来,已经开发出多种超分辨率荧光显微镜技术,这些技术规避了分辨率限制。在这里,我们简要概述这些技术及其在细胞生物物理学中的应用。

相似文献

1
Optical imaging of nanoscale cellular structures.
Biophys Rev. 2010 Dec;2(4):147-158. doi: 10.1007/s12551-010-0037-0. Epub 2010 Sep 8.
2
Recent advances in super-resolution fluorescence imaging and its applications in biology.
J Genet Genomics. 2013 Dec 20;40(12):583-95. doi: 10.1016/j.jgg.2013.11.003. Epub 2013 Nov 23.
3
From single molecules to life: microscopy at the nanoscale.
Anal Bioanal Chem. 2016 Oct;408(25):6885-911. doi: 10.1007/s00216-016-9781-8. Epub 2016 Sep 9.
4
Super-Resolution Microscopy Techniques and Their Potential for Applications in Radiation Biophysics.
Methods Mol Biol. 2017;1663:1-13. doi: 10.1007/978-1-4939-7265-4_1.
6
Recent advancements in structured-illumination microscopy toward live-cell imaging.
Microscopy (Oxf). 2015 Aug;64(4):237-49. doi: 10.1093/jmicro/dfv034. Epub 2015 Jun 30.
8
Photostable and photoswitching fluorescent dyes for super-resolution imaging.
J Biol Inorg Chem. 2017 Jul;22(5):639-652. doi: 10.1007/s00775-016-1435-y. Epub 2017 Jan 12.
9
Advanced Microscopy Techniques for Molecular Biophysics.
Int J Mol Sci. 2023 Jun 9;24(12):9973. doi: 10.3390/ijms24129973.
10
Super-resolution Microscopy - Applications in Plant Cell Research.
Front Plant Sci. 2017 Apr 13;8:531. doi: 10.3389/fpls.2017.00531. eCollection 2017.

引用本文的文献

3
Luminescent gold nanoclusters for bioimaging applications.
Beilstein J Nanotechnol. 2020 Mar 30;11:533-546. doi: 10.3762/bjnano.11.42. eCollection 2020.
4
Gold nanoclusters as novel optical probes for in vitro and in vivo fluorescence imaging.
Biophys Rev. 2012 Dec;4(4):313-322. doi: 10.1007/s12551-012-0076-9. Epub 2012 Apr 12.
5
Super-resolution localization microscopy with photoactivatable fluorescent marker proteins.
Protoplasma. 2014 Mar;251(2):349-62. doi: 10.1007/s00709-013-0566-z. Epub 2013 Oct 27.
6
Mechanistic insights into reversible photoactivation in proteins of the GFP family.
Biophys J. 2012 Dec 19;103(12):2521-31. doi: 10.1016/j.bpj.2012.11.011. Epub 2012 Dec 18.
7
Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants.
J Biol Chem. 2012 May 4;287(19):16047-57. doi: 10.1074/jbc.M111.313841. Epub 2012 Mar 8.

本文引用的文献

1
A photoactivatable marker protein for pulse-chase imaging with superresolution.
Nat Methods. 2010 Aug;7(8):627-30. doi: 10.1038/nmeth.1477. Epub 2010 Jul 4.
2
Ultra-fast, high-precision image analysis for localization-based super resolution microscopy.
Opt Express. 2010 May 24;18(11):11867-76. doi: 10.1364/OE.18.011867.
3
Near-isotropic 3D optical nanoscopy with photon-limited chromophores.
Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10068-73. doi: 10.1073/pnas.1004899107. Epub 2010 May 14.
4
QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ.
Nat Methods. 2010 May;7(5):339-40. doi: 10.1038/nmeth0510-339.
5
Fast, single-molecule localization that achieves theoretically minimum uncertainty.
Nat Methods. 2010 May;7(5):373-5. doi: 10.1038/nmeth.1449. Epub 2010 Apr 4.
6
The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging.
J Biotechnol. 2010 Sep 15;149(4):260-6. doi: 10.1016/j.jbiotec.2010.02.010. Epub 2010 Feb 20.
7
Fast STED microscopy with continuous wave fiber lasers.
Opt Express. 2010 Jan 18;18(2):1302-9. doi: 10.1364/OE.18.001302.
9
Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI).
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22287-92. doi: 10.1073/pnas.0907866106. Epub 2009 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验