Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
J Control Release. 2013 Mar 10;166(2):182-94. doi: 10.1016/j.jconrel.2012.12.013. Epub 2012 Dec 20.
The rapid advancement of nanotechnology has raised the possibility of using engineered nanoparticles that interact within biological environments for treatment of diseases. Nanoparticles interacting with cells and the extracellular environment can trigger a sequence of biological effects. These effects largely depend on the dynamic physicochemical characteristics of nanoparticles, which determine the biocompatibility and efficacy of the intended outcomes. Understanding the mechanisms behind these different outcomes will allow prediction of the relationship between nanostructures and their interactions with the biological milieu. At present, almost no standard biocompatibility evaluation criteria have been established, in particular for nanoparticles used in drug delivery systems. Therefore, an appropriate safety guideline of nanoparticles on human health with assessable endpoints is needed. In this review, we discuss the data existing in the literature regarding biocompatibility of nanoparticles for drug delivery applications. We also review the various types of nanoparticles used in drug delivery systems while addressing new challenges and research directions. Presenting the aforementioned information will aid in getting one step closer to formulating compatibility criteria for biological systems under exposure to different nanoparticles.
纳米技术的快速发展提出了这样一种可能性,即可以利用在生物环境中相互作用的工程纳米粒子来治疗疾病。与细胞和细胞外环境相互作用的纳米粒子会引发一系列生物效应。这些效应在很大程度上取决于纳米粒子的动态物理化学特性,而这些特性决定了预期结果的生物相容性和功效。了解这些不同结果背后的机制将能够预测纳米结构及其与生物环境相互作用之间的关系。目前,几乎没有建立起用于药物输送系统的纳米粒子的标准生物相容性评估标准。因此,需要制定针对人类健康的具有可评估终点的纳米粒子适当安全指南。在这篇综述中,我们讨论了文献中关于用于药物输送应用的纳米粒子的生物相容性的数据。我们还回顾了用于药物输送系统的各种类型的纳米粒子,同时探讨了新的挑战和研究方向。呈现上述信息将有助于制定在接触不同纳米粒子的情况下生物系统的相容性标准。