Li Thomas J X, Reidys Christian M
Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin, 300071, People's Republic of China.
J Math Biol. 2012 Feb;64(3):529-56. doi: 10.1007/s00285-011-0423-7. Epub 2011 May 4.
RNA-RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Here joint structure means that in a diagram representation the intramolecular bonds of each partner are pseudoknot-free, that the intermolecular binding pairs are noncrossing, and that there is no so-called "zigzag" configuration. This paper presents the combinatorics of RNA interaction structures including their generating function, singularity analysis as well as explicit recurrence relations. In particular, our results imply simple asymptotic formulas for the number of joint structures.
RNA与RNA的结合是在许多类非编码RNA中观察到的一种重要现象,并且在许多调控过程中发挥着关键作用。最近,已经提出了几种用于预测两个相互作用RNA分子的联合结构的最小自由能(MFE)折叠算法。这里的联合结构是指在图表示中,每个分子内的键没有假结,分子间的结合对不交叉,并且不存在所谓的“之字形”构型。本文介绍了RNA相互作用结构的组合学,包括它们的生成函数、奇点分析以及显式递推关系。特别地,我们的结果给出了联合结构数量的简单渐近公式。