Suppr超能文献

关于预应变和残余应力对薄生物膜的影响。

On the effect of prestrain and residual stress in thin biological membranes.

作者信息

Rausch Manuel K, Kuhl Ellen

机构信息

Department of Mechanical Engineering, Stanford, California, USA.

出版信息

J Mech Phys Solids. 2013 Sep 1;61(9):1955-1969. doi: 10.1016/j.jmps.2013.04.005.

Abstract

Understanding the difference between ex vivo and in vivo measurements is critical to interpret the load carrying mechanisms of living biological systems. For the past four decades, the ex vivo stiffness of thin biological membranes has been characterized using uniaxial and biaxial tests with remarkably consistent stiffness parameters, even across different species. Recently, the in vivo stiffness was characterized using combined imaging techniques and inverse finite element analyses. Surprisingly, ex vivo and in vivo stiffness values differed by up to three orders of magnitude. Here, for the first time, we explain this tremendous discrepancy using the concept of prestrain. We illustrate the mathematical modeling of prestrain in nonlinear continuum mechanics through the multiplicative decomposition of the total elastic deformation into prestrain-induced and load-induced parts. Using in vivo measured membrane kinematics and associated pressure recordings, we perform an inverse finite element analysis for different prestrain levels and show that the resulting membrane stiffness may indeed differ by four orders of magnitude depending on the prestrain level. Our study motivates the hypothesis that prestrain is important to position thin biological membranes in vivo into their optimal operating range, right at the transition point of the stiffening regime. Understanding the effect of prestrain has direct clinical implications in regenerative medicine, medical device design, and and tissue engineering of replacement constructs for thin biological membranes.

摘要

理解体外测量和体内测量之间的差异对于阐释活体生物系统的负载机制至关重要。在过去的四十年里,薄生物膜的体外刚度一直通过单轴和双轴测试来表征,其刚度参数非常一致,甚至在不同物种之间也是如此。最近,体内刚度通过联合成像技术和逆有限元分析来表征。令人惊讶的是,体外和体内刚度值相差高达三个数量级。在此,我们首次使用预应变的概念来解释这种巨大差异。我们通过将总弹性变形乘法分解为预应变诱导部分和载荷诱导部分,来说明非线性连续介质力学中预应变的数学建模。利用体内测量的膜运动学和相关压力记录,我们针对不同的预应变水平进行了逆有限元分析,结果表明,根据预应变水平,所得的膜刚度可能确实相差四个数量级。我们的研究提出了一个假设,即预应变对于将薄生物膜在体内定位到其最佳工作范围至关重要,恰好在硬化状态的转变点。理解预应变的影响在再生医学、医疗器械设计以及薄生物膜替代构建体的组织工程中具有直接的临床意义。

相似文献

4
Heterogeneous growth-induced prestrain in the heart.心脏中异质性生长诱导的预应变。
J Biomech. 2015 Jul 16;48(10):2080-9. doi: 10.1016/j.jbiomech.2015.03.012. Epub 2015 Apr 3.
7
Mechanical modeling of fluid-driven polymer lenses.流体驱动聚合物透镜的力学建模
Appl Opt. 2008 Jul 10;47(20):3658-68. doi: 10.1364/ao.47.003658.
9
On the mechanics of growing thin biological membranes.关于生长中的薄生物膜的力学原理。
J Mech Phys Solids. 2014 Feb 1;63:128-140. doi: 10.1016/j.jmps.2013.09.015.

引用本文的文献

3
Investigation of direction- and age-dependent prestretch in mouse cranial dura mater.研究小鼠颅顶硬脑膜的方向和年龄依赖性预拉伸。
Biomech Model Mechanobiol. 2024 Jun;23(3):721-735. doi: 10.1007/s10237-023-01802-6. Epub 2024 Jan 11.
5
7
On the mechanics of thin films and growing surfaces.论薄膜与生长表面的力学原理。
Math Mech Solids. 2013 Aug;18(6):561-575. doi: 10.1177/1081286513485776. Epub 2013 May 24.
8
Benchtop characterization of the tricuspid valve leaflet pre-strains.三尖瓣叶瓣预应变的台架特性描述。
Acta Biomater. 2022 Oct 15;152:321-334. doi: 10.1016/j.actbio.2022.08.046. Epub 2022 Aug 27.
10
A design-based model of the aortic valve for fluid-structure interaction.用于流固耦合的主动脉瓣设计模型。
Biomech Model Mechanobiol. 2021 Dec;20(6):2413-2435. doi: 10.1007/s10237-021-01516-7. Epub 2021 Sep 21.

本文引用的文献

2
Evidence of adaptive mitral leaflet growth.二尖瓣叶适应性生长的证据。
J Mech Behav Biomed Mater. 2012 Nov;15:208-17. doi: 10.1016/j.jmbbm.2012.07.001. Epub 2012 Jul 10.
9
Perspectives on biological growth and remodeling.关于生物生长与重塑的观点。
J Mech Phys Solids. 2011 Apr 1;59(4):863-883. doi: 10.1016/j.jmps.2010.12.011.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验