Suppr超能文献

一种混合潜在激活方案下的治愈率生存模型。

A cure rate survival model under a hybrid latent activation scheme.

作者信息

Borges Patrick, Rodrigues Josemar, Louzada Francisco, Balakrishnan Narayanaswamy

机构信息

Department of Statistics, Universidade Federal do Espírito Santo, Vitøria, Brazil

Department of Statistics, Universidade Federal de São Carlos, São Paulo, Brazil.

出版信息

Stat Methods Med Res. 2016 Apr;25(2):838-56. doi: 10.1177/0962280212469682. Epub 2012 Dec 21.

Abstract

In lifetimes studies, the occurrence of an event (such as tumor detection or death) might be caused by one of many competing causes. Moreover, both the number of causes and the time-to-event associated with each cause are not usually observable. The number of causes can be zero, corresponding to a cure fraction. In this article, we propose a method of estimating the numerical characteristics of unobservable stages (such as initiation, promotion and progression) of carcinogenesis from data on tumor size at detection in the presence of latent competing causes. To this end, a general survival model for spontaneous carcinogenesis under a hybrid latent activation scheme has been developed to allow for a simple pattern of the dynamics of tumor growth. It is assumed that a tumor becomes detectable when its size attains some threshold level (proliferation of tumorais cells (or descendants) generated by the malignant cell), which is treated as a random variable. We assume the number of initiated cells and the number of malignant cells (competing causes) both to follow weighted Poisson distributions. The advantage of this model is that it incorporates into the analysis characteristics of the stage of tumor progression as well as the proportion of initiated cells that had been 'promoted' to the malignant ones and the proportion of malignant cells that die before tumor induction. The lifetimes corresponding to each competing cause are assumed to follow a Weibull distribution. Parameter estimation of the proposed model is discussed through the maximum likelihood estimation method. A simulation study has been carried out in order to examine the coverage probabilities of the confidence intervals. Finally, we illustrate the usefulness of the proposed model by applying it to a real data involving malignant melanoma.

摘要

在寿命研究中,某一事件(如肿瘤检测或死亡)的发生可能由多种相互竞争的原因之一引起。此外,原因的数量以及与每个原因相关的事件发生时间通常是不可观测的。原因的数量可以为零,这对应于治愈比例。在本文中,我们提出了一种方法,用于在存在潜在竞争原因的情况下,根据检测时肿瘤大小的数据来估计致癌过程中不可观测阶段(如启动、促进和进展)的数值特征。为此,我们开发了一种在混合潜在激活方案下的自发致癌通用生存模型,以允许肿瘤生长动态呈现简单模式。假设当肿瘤大小达到某个阈值水平(由恶性细胞产生的肿瘤细胞(或后代)的增殖)时肿瘤变得可检测,该阈值水平被视为一个随机变量。我们假设起始细胞数量和恶性细胞数量(竞争原因)均服从加权泊松分布。该模型的优点在于,它将肿瘤进展阶段的特征、已“促进”为恶性细胞的起始细胞比例以及在肿瘤诱导前死亡的恶性细胞比例纳入了分析。假设与每个竞争原因相对应的寿命服从威布尔分布。通过最大似然估计方法讨论了所提出模型的参数估计。进行了一项模拟研究以检验置信区间的覆盖概率。最后,我们通过将其应用于涉及恶性黑色素瘤的真实数据来说明所提出模型的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验