Suppr超能文献

异质竞争原因的治愈率模型。

Cure rate models for heterogeneous competing causes.

机构信息

Departamento de Estatística, Universidade Federal do Amazonas, Manaus, Brazil.

Departamento de Estadística, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile.

出版信息

Stat Methods Med Res. 2023 Sep;32(9):1823-1841. doi: 10.1177/09622802231188514. Epub 2023 Jul 25.

Abstract

Cure rate models have been widely studied to analyze time-to-event data with a cured fraction of patients. In this type of model, the number of concurrent causes is assumed to be a random variable. However, in practice, it is natural to admit that the distribution of the number of competing causes is different from individual to individual. Our proposal is to assume that the number of competing causes belongs to a class of a finite mixture of competing causes distributions. We assume the number of malignant cells follow a mixture of two power series distributions and suppose that the time to the event of interest follows a Weibull distribution. We consider the proportion of the cured number of competing causes depending on covariates, allowing direct modeling of the cure rate. The proposed model includes several well-known models as special cases and defines many new special models. An expectation-maximization algorithm is proposed for parameter estimation, where the expectation step involves the computation of the expected number of concurrent causes for each individual. A Monte Carlo simulation is performed to assess the behavior of the estimation method. In order to show the potential for the practice of our model, we apply it to the real medical data set from a population-based study of incident cases of cutaneous melanoma diagnosed in the state of São Paulo, Brazil, illustrating that the model proposed can outperform traditional models in terms of model fitting.

摘要

治愈率模型已被广泛研究,用于分析具有治愈部分患者的时间事件数据。在这种类型的模型中,假设同时存在的原因数量是一个随机变量。然而,在实践中,自然会承认同时存在的原因数量的分布因个体而异。我们的建议是假设同时存在的原因数量属于有限混合竞争原因分布的一类。我们假设恶性细胞的数量遵循混合两种幂级数分布,并假设感兴趣事件的时间遵循威布尔分布。我们考虑了治愈数量的竞争原因取决于协变量的比例,允许直接对治愈率进行建模。所提出的模型包括几个著名的模型作为特例,并定义了许多新的特殊模型。提出了一种期望最大化算法来进行参数估计,其中期望步骤涉及计算每个个体的同时存在的原因的预期数量。进行了蒙特卡罗模拟以评估估计方法的行为。为了展示我们模型的实践潜力,我们将其应用于巴西圣保罗州基于人群的皮肤黑色素瘤发病病例的真实医学数据集,结果表明,所提出的模型在模型拟合方面可以优于传统模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验