Suppr超能文献

一种具有灵活竞争原因的新治愈率模型及其在黑色素瘤和移植数据中的应用。

A new cure rate model with flexible competing causes with applications to melanoma and transplantation data.

作者信息

Leão Jeremias, Bourguignon Marcelo, Gallardo Diego I, Rocha Ricardo, Tomazella Vera

机构信息

Department of Statistics, Universidade Federal do Amazonas, Amazonas, Brazil.

Department of Statistics, Universidade Federal do Rio Grande do Norte, Natal, Brazil.

出版信息

Stat Med. 2020 Oct 30;39(24):3272-3284. doi: 10.1002/sim.8664. Epub 2020 Jul 27.

Abstract

In this article, we introduce a long-term survival model in which the number of competing causes of the event of interest follows the zero-modified geometric (ZMG) distribution. Such distribution accommodates equidispersion, underdispersion, and overdispersion and captures deflation or inflation of zeros in the number of lesions or initiated cells after the treatment. The ZMG distribution is also an appropriate alternative for modeling clustered samples when the number of competing causes of the event of interest consists of two subpopulations, one containing only zeros (cure proportion), while in the other (noncure proportion) the number of competing causes of the event of interest follows a geometric distribution. The advantage of this assumption is that we can measure the cure proportion in the initiated cells. Furthermore, the proposed model can yield greater or lower cure proportion than that of the geometric distribution when modeling the number of competing causes. In this article, we present some statistical properties of the proposed model and use the maximum likelihood method to estimate the model parameters. We also conduct a Monte Carlo simulation study to evaluate the performance of the estimators. We present and discuss two applications using real-world medical data to assess the practical usefulness of the proposed model.

摘要

在本文中,我们介绍了一种长期生存模型,其中感兴趣事件的竞争原因数量服从零修正几何(ZMG)分布。这种分布适用于等离散、欠离散和过离散情况,并能捕捉治疗后病变或起始细胞数量中零值的缩减或膨胀。当感兴趣事件的竞争原因数量由两个亚群组成时,ZMG分布也是对聚类样本进行建模的合适选择,其中一个亚群仅包含零值(治愈比例),而另一个亚群(非治愈比例)中感兴趣事件的竞争原因数量服从几何分布。这种假设的优点是我们可以测量起始细胞中的治愈比例。此外,在对竞争原因数量进行建模时,所提出的模型可以产生比几何分布更高或更低的治愈比例。在本文中,我们给出了所提出模型的一些统计性质,并使用最大似然法估计模型参数。我们还进行了蒙特卡罗模拟研究,以评估估计量的性能。我们展示并讨论了两个使用实际医疗数据的应用,以评估所提出模型的实际实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验