Suppr超能文献

量子力学分析核酸中π堆积的能量贡献与升高、扭曲和滑动。

Quantum-mechanical analysis of the energetic contributions to π stacking in nucleic acids versus rise, twist, and slide.

机构信息

Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.

出版信息

J Am Chem Soc. 2013 Jan 30;135(4):1306-16. doi: 10.1021/ja3063309. Epub 2013 Jan 16.

Abstract

Symmetry-adapted perturbation theory (SAPT) is applied to pairs of hydrogen-bonded nucleobases to obtain the energetic components of base stacking (electrostatic, exchange-repulsion, induction/polarization, and London dispersion interactions) and how they vary as a function of the helical parameters Rise, Twist, and Slide. Computed average values of Rise and Twist agree well with experimental data for B-form DNA from the Nucleic Acids Database, even though the model computations omitted the backbone atoms (suggesting that the backbone in B-form DNA is compatible with having the bases adopt their ideal stacking geometries). London dispersion forces are the most important attractive component in base stacking, followed by electrostatic interactions. At values of Rise typical of those in DNA (3.36 Å), the electrostatic contribution is nearly always attractive, providing further evidence for the importance of charge-penetration effects in π-π interactions (a term neglected in classical force fields). Comparison of the computed stacking energies with those from model complexes made of the "parent" nucleobases purine and 2-pyrimidone indicates that chemical substituents in DNA and RNA account for 20-40% of the base-stacking energy. A lack of correspondence between the SAPT results and experiment for Slide in RNA base-pair steps suggests that the backbone plays a larger role in determining stacking geometries in RNA than in B-form DNA. In comparisons of base-pair steps with thymine versus uracil, the thymine methyl group tends to enhance the strength of the stacking interaction through a combination of dispersion and electrosatic interactions.

摘要

对称自适应微扰理论 (SAPT) 被应用于氢键结合的碱基对,以获得碱基堆积的能量组成部分(静电、交换排斥、诱导/极化和伦敦色散相互作用),以及它们如何随螺旋参数上升、扭曲和滑动而变化。计算得到的 Rise 和 Twist 的平均值与来自核酸数据库的 B 型 DNA 的实验数据非常吻合,尽管模型计算省略了骨架原子(表明 B 型 DNA 中的骨架与碱基采用其理想的堆积几何形状兼容)。伦敦色散力是碱基堆积中最重要的吸引性成分,其次是静电相互作用。在 Rise 值典型的 DNA 值(3.36 Å)下,静电贡献几乎总是吸引力,这进一步证明了电荷渗透效应在 π-π 相互作用中的重要性(经典力场中忽略的一个术语)。与由“母体”碱基嘌呤和 2-嘧啶酮组成的模型复合物的计算堆积能的比较表明,DNA 和 RNA 中的化学取代基占碱基堆积能的 20-40%。RNA 碱基对台阶中 SAPT 结果与实验之间在滑动方面的不一致表明,在 RNA 中,骨架在确定堆积几何形状方面比在 B 型 DNA 中发挥更大的作用。在胸腺嘧啶与尿嘧啶的碱基对台阶比较中,胸腺嘧啶甲基通过色散和静电相互作用的组合倾向于增强堆积相互作用的强度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验