Mitchell Michael A J, Sanvito Stefano, Jones Lewys
Centre for Research on Adaptive Nanostructures and Nanodevices, Dublin, D02 W085, Ireland.
School of Physics, Trinity College Dublin, Dublin, Ireland.
Sci Rep. 2025 May 13;15(1):16626. doi: 10.1038/s41598-025-96859-x.
Under low-illumination conditions, images inevitably contain both Poisson and Gaussian noise. In electron microscopy, there is the added complication whereby increasing the dose-rate, to improve signal-to-noise, damages the specimen being imaged, making certain materials being impossible to characterise. Conventional data smoothing techniques may dampen usable image contrast, and deep-neural network (DNN) based approaches risk the introduction of artefacts. In this work, the complementary strengths of patch-based and DNN approaches are combined into a lightweight denoising architecture such that experimental data integrity is preserved while effectively removing noise. Our approach, the Rapid Eigenpatch Utility Classifier for Image Denoising (REUCID), leverages the speed and data-integrity of a non-local patch-based SVD step to identify key image components, followed by a convolutional neural network (CNN) acting strictly in a classification capacity on the SVD eigenvectors. This classification-only approach to DNN integration represents a significant advance by mitigating the risk of DNN overreach while maintaining denoising effectiveness. We demonstrate superior performance on high angle annular dark field images, where our hybrid method outperforms conventional techniques in enhancing image contrast while preserving genuine structural features.
在低光照条件下,图像不可避免地同时包含泊松噪声和高斯噪声。在电子显微镜中,还有一个额外的复杂情况,即提高剂量率以改善信噪比会损坏正在成像的样本,导致某些材料无法被表征。传统的数据平滑技术可能会降低可用图像的对比度,而基于深度神经网络(DNN)的方法则有引入伪像的风险。在这项工作中,基于补丁和DNN方法的互补优势被整合到一个轻量级的去噪架构中,从而在有效去除噪声的同时保留实验数据的完整性。我们的方法,即用于图像去噪的快速特征补丁实用分类器(REUCID),利用基于非局部补丁的奇异值分解步骤的速度和数据完整性来识别关键图像组件,然后是一个卷积神经网络(CNN),它仅对奇异值分解特征向量进行严格的分类操作。这种仅用于分类的DNN集成方法通过降低DNN过度扩展的风险同时保持去噪效果,代表了一个重大进展。我们在高角度环形暗场图像上展示了卓越的性能,我们的混合方法在增强图像对比度同时保留真实结构特征方面优于传统技术。