Suppr超能文献

基于细节的字典学习,用于使用工业应用相机响应模型的低光照图像增强。

Detailed-based dictionary learning for low-light image enhancement using camera response model for industrial applications.

作者信息

Goyal Bhawna, Dogra Ayush, Jalamneh Ammar, Chyophel Lepcha Dawa, Alkhayyat Ahmed, Singh Rajesh, Jyoti Saikia Manob

机构信息

Department of UCRD and ECE, Chandigarh University, Mohali, Punjab, 140413, India.

Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.

出版信息

Sci Rep. 2024 Jul 25;14(1):17122. doi: 10.1038/s41598-024-64421-w.

Abstract

Images captured in low-light environments are severely degraded due to insufficient light, which causes the performance decline of both commercial and consumer devices. One of the major challenges lies in how to balance the image enhancement properties of light intensity, detail presentation, and colour integrity in low-light enhancement tasks. This study presents a novel image enhancement framework using a detailed-based dictionary learning and camera response model (CRM). It combines dictionary learning with edge-aware filter-based detail enhancement. It assumes each small detail patch could be sparsely characterised in the over-complete detail dictionary that was learned from many training detail patches using iterative -norm minimization. Dictionary learning will effectively address several enhancement concerns in the progression of detail enhancement if we remove the visibility limit of training detail patches in the enhanced detail patches. We apply illumination estimation schemes to the selected CRM and the subsequent exposure ratio maps, which recover a novel enhanced detail layer and generate a high-quality output with detailed visibility when there is a training set of higher-quality images. We estimate the exposure ratio of each pixel using illumination estimation techniques. The selected camera response model adjusts each pixel to the desired exposure based on the computed exposure ratio map. Extensive experimental analysis shows an advantage of the proposed method that it can obtain enhanced results with acceptable distortions. The proposed research article can be generalised to address numerous other similar problems, such as image enhancement for remote sensing or underwater applications, medical imaging, and foggy or dusty conditions.

摘要

在低光照环境下拍摄的图像会因光线不足而严重退化,这导致商业和消费设备的性能下降。主要挑战之一在于如何在低光照增强任务中平衡光强度的图像增强特性、细节呈现和色彩完整性。本研究提出了一种使用基于细节的字典学习和相机响应模型(CRM)的新型图像增强框架。它将字典学习与基于边缘感知滤波器的细节增强相结合。它假设每个小细节块可以在通过使用迭代 -范数最小化从许多训练细节块中学习到的过完备细节字典中进行稀疏表征。如果我们去除增强细节块中训练细节块的可见性限制,字典学习将在细节增强过程中有效解决几个增强问题。当有一组高质量图像的训练集时,我们将光照估计方案应用于所选的相机响应模型和随后的曝光比图,从而恢复一个新颖的增强细节层并生成具有详细可见性的高质量输出。我们使用光照估计技术估计每个像素的曝光比。所选的相机响应模型根据计算出的曝光比图将每个像素调整到所需的曝光。广泛的实验分析表明,所提出的方法具有优势,即它可以在可接受的失真情况下获得增强结果。所提出的研究文章可以推广到解决许多其他类似问题,例如遥感或水下应用的图像增强、医学成像以及有雾或多尘条件下的图像增强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f1d/11272774/0768c29ea126/41598_2024_64421_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验