Suppr超能文献

通过模拟脑卒中后观察到的激活缺陷来理解步态中肌肉无力的代偿策略。

Understanding compensatory strategies for muscle weakness during gait by simulating activation deficits seen post-stroke.

机构信息

Biomechanics and Movement Science, University of Delaware, Newark, DE, United States.

出版信息

Gait Posture. 2013 Jun;38(2):270-5. doi: 10.1016/j.gaitpost.2012.11.027. Epub 2012 Dec 27.

Abstract

Musculoskeletal simulations have been used to explore compensatory strategies, but have focused on responses to simulated atrophy in a single muscle or muscle group. In a population such as stroke, however, impairments are seen in muscle activation across multiple muscle groups. The objective of this study was to identify available compensatory strategies for muscle weakness during gait by simulating activation deficits in multiple muscle groups. Three dimensional dynamics simulations were created from 10 healthy subjects (48.8 ± 13.3 years, self-selected speed 1.28 ± 0.17 m/s) and constraints were set on the activation capacity of the plantar flexor, dorsiflexor, and hamstrings muscle groups to simulate activation impairme nts seen post-stroke. When the muscle groups are impaired individually, the model requires that the plantar flexor, dorsiflexor, and hamstrings muscle groups are activated to at least 55%, 64%, and 18%, respectively, to recreate the subjects' normal gait pattern. The models were unable to recreate the normal gait pattern with simultaneous impairment of all three muscle groups. Other muscle groups are unable to assist the dorsiflexor muscles during early swing, which suggests that rehabilitation or assistive devices may be required to correct foot drop. By identifying how muscles can interact, clinicians may be able to develop specific strategies for using gait retraining and orthotic assistance to best address an individual's needs.

摘要

肌肉骨骼模拟已被用于探索代偿策略,但主要集中在模拟单一肌肉或肌肉群萎缩时的反应。然而,在像中风这样的人群中,会出现多个肌肉群的肌肉激活受损。本研究的目的是通过模拟多个肌肉群的激活缺陷,确定在步态过程中肌肉无力的可用代偿策略。从 10 名健康受试者(48.8 ± 13.3 岁,自我选择速度 1.28 ± 0.17 m/s)创建了三维动力学模拟,并对跖屈肌、背屈肌和腘绳肌的激活能力施加限制,以模拟中风后出现的激活损伤。当肌肉群单独受损时,模型要求跖屈肌、背屈肌和腘绳肌的激活程度分别至少达到 55%、64%和 18%,以重现受试者的正常步态模式。当同时损伤所有三个肌肉群时,模型无法重现正常的步态模式。其他肌肉群在早期摆动时无法协助背屈肌,这表明可能需要康复或辅助设备来纠正足下垂。通过确定肌肉如何相互作用,临床医生可能能够制定特定的策略,通过步态再训练和矫形辅助来最好地满足个体的需求。

相似文献

1
Understanding compensatory strategies for muscle weakness during gait by simulating activation deficits seen post-stroke.
Gait Posture. 2013 Jun;38(2):270-5. doi: 10.1016/j.gaitpost.2012.11.027. Epub 2012 Dec 27.
3
Simulating the effect of muscle weakness and contracture on neuromuscular control of normal gait in children.
Gait Posture. 2018 Mar;61:169-175. doi: 10.1016/j.gaitpost.2018.01.010. Epub 2018 Jan 12.
4
Gait Impairments in Patients Without Lower Limb Hypertonia Early Poststroke Are Related to Weakness of Paretic Knee Flexors.
Arch Phys Med Rehabil. 2019 Jun;100(6):1091-1101. doi: 10.1016/j.apmr.2018.10.014. Epub 2018 Nov 14.
5
Gait post-stroke: Pathophysiology and rehabilitation strategies.
Neurophysiol Clin. 2015 Nov;45(4-5):335-55. doi: 10.1016/j.neucli.2015.09.005. Epub 2015 Nov 4.
6
Correlations between ankle-foot impairments and dropped foot gait deviations among stroke survivors.
Clin Biomech (Bristol). 2013 Nov-Dec;28(9-10):1049-54. doi: 10.1016/j.clinbiomech.2013.09.007. Epub 2013 Sep 19.
8
Compensatory strategy for ankle dorsiflexion muscle weakness during gait in patients with drop-foot.
Gait Posture. 2019 Feb;68:88-94. doi: 10.1016/j.gaitpost.2018.11.011. Epub 2018 Nov 13.
9
Effects of an aerobic exercise program on aerobic capacity, spatiotemporal gait parameters, and functional capacity in subacute stroke.
Neurorehabil Neural Repair. 2009 May;23(4):398-406. doi: 10.1177/1545968308326426. Epub 2008 Dec 16.

引用本文的文献

2
Ten steps to becoming a musculoskeletal simulation expert: A half-century of progress and outlook for the future.
J Biomech. 2023 Jun;154:111623. doi: 10.1016/j.jbiomech.2023.111623. Epub 2023 May 10.
3
Time-course gait pattern analysis in a rat model of foot drop induced by ventral root avulsion injury.
Front Hum Neurosci. 2022 Dec 19;16:972316. doi: 10.3389/fnhum.2022.972316. eCollection 2022.
4
Water T2 could predict functional decline in patients with dysferlinopathy.
J Cachexia Sarcopenia Muscle. 2022 Dec;13(6):2888-2897. doi: 10.1002/jcsm.13063. Epub 2022 Sep 4.
5
A Systematic Review of Muscle Synergies during a Walking Gait to Define Optimal Donor-Recipient Pairings for Lower Extremity Functional Reconstruction.
Plast Reconstr Surg Glob Open. 2022 Aug 15;10(8):e4438. doi: 10.1097/GOX.0000000000004438. eCollection 2022 Aug.
7
Interactions Between Different Age-Related Factors Affecting Balance Control in Walking.
Front Sports Act Living. 2020 Jul 31;2:94. doi: 10.3389/fspor.2020.00094. eCollection 2020.
8
Effects of kinematic complexity and number of muscles on musculoskeletal model robustness to muscle dysfunction.
PLoS One. 2019 Jul 24;14(7):e0219779. doi: 10.1371/journal.pone.0219779. eCollection 2019.
10
The mobilize center: an NIH big data to knowledge center to advance human movement research and improve mobility.
J Am Med Inform Assoc. 2015 Nov;22(6):1120-5. doi: 10.1093/jamia/ocv071. Epub 2015 Aug 13.

本文引用的文献

1
How much muscle strength is required to walk in a crouch gait?
J Biomech. 2012 Oct 11;45(15):2564-9. doi: 10.1016/j.jbiomech.2012.07.028. Epub 2012 Sep 5.
2
Medial gastrocnemius muscle fascicle active torque-length and Achilles tendon properties in young adults with spastic cerebral palsy.
J Biomech. 2012 Oct 11;45(15):2526-30. doi: 10.1016/j.jbiomech.2012.07.018. Epub 2012 Aug 3.
3
How robust is human gait to muscle weakness?
Gait Posture. 2012 May;36(1):113-9. doi: 10.1016/j.gaitpost.2012.01.017. Epub 2012 Mar 3.
4
Muscle atrophy and functional deficits of knee extensors and flexors in people with chronic stroke.
Phys Ther. 2012 Mar;92(3):429-39. doi: 10.2522/ptj.20090127. Epub 2011 Dec 1.
5
Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait.
Gait Posture. 2011 Feb;33(2):309-13. doi: 10.1016/j.gaitpost.2010.11.019. Epub 2010 Dec 22.
6
Voluntary activation failure contributes more to plantar flexor weakness than antagonist coactivation and muscle atrophy in chronic stroke survivors.
J Appl Physiol (1985). 2010 Nov;109(5):1337-46. doi: 10.1152/japplphysiol.00804.2009. Epub 2010 Aug 19.
7
Pre-swing deficits in forward propulsion, swing initiation and power generation by individual muscles during hemiparetic walking.
J Biomech. 2010 Aug 26;43(12):2348-55. doi: 10.1016/j.jbiomech.2010.04.027. Epub 2010 May 13.
8
Distinguishing active from passive components of ankle plantar flexor stiffness in stroke, spinal cord injury and multiple sclerosis.
Clin Neurophysiol. 2010 Nov;121(11):1939-51. doi: 10.1016/j.clinph.2010.02.167. Epub 2010 May 10.
9
Functional electrical stimulation of ankle plantarflexor and dorsiflexor muscles: effects on poststroke gait.
Stroke. 2009 Dec;40(12):3821-7. doi: 10.1161/STROKEAHA.109.560375. Epub 2009 Oct 15.
10
Intrinsic muscle strength and voluntary activation of both lower limbs and functional performance after stroke.
Clin Physiol Funct Imaging. 2008 Jul;28(4):251-61. doi: 10.1111/j.1475-097X.2008.00802.x. Epub 2008 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验