Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.
DNA Repair (Amst). 2013 Mar 1;12(3):196-204. doi: 10.1016/j.dnarep.2012.12.001. Epub 2012 Dec 28.
Schizosaccharomyces pombe contains two paralogous proteins, Mag1 and Mag2, related to the helix-hairpin-helix (HhH) superfamily of alkylpurine DNA glycosylases from yeast and bacteria. Phylogenetic analysis of related proteins from four Schizosaccharomyces and other fungal species shows that the Mag1/Mag2 duplication is unique to the genus Schizosaccharomyces and most likely occurred in its ancestor. Mag1 excises N3- and N7-alkylguanines and 1,N(6)-ethenoadenine from DNA, whereas Mag2 has been reported to have no detectible alkylpurine base excision activity despite high sequence and active site similarity to Mag1. To understand this discrepancy we determined the crystal structure of Mag2 bound to abasic DNA and compared it to our previously determined Mag1-DNA structure. In contrast to Mag1, Mag2 does not flip the abasic moiety into the active site or stabilize the DNA strand 5' to the lesion, suggesting that it is incapable of forming a catalytically competent protein-DNA complex. Subtle differences in Mag1 and Mag2 interactions with the DNA duplex illustrate how Mag2 can stall at damage sites without fully engaging the lesion. We tested our structural predictions by mutational analysis of base excision and found a single amino acid responsible at least in part for Mag2's lack of activity. Substitution of Mag2 Asp56, which caps the helix at the base of the DNA intercalation loop, with the corresponding serine residue in Mag1 endows Mag2 with ɛA excision activity comparable to Mag1. This work provides novel insight into the chemical and physical determinants by which the HhH glycosylases engage DNA in a catalytically productive manner.
裂殖酵母包含两个同源蛋白 Mag1 和 Mag2,它们与来自酵母和细菌的螺旋-发夹-螺旋(HhH)超家族的烷基嘌呤 DNA 糖基化酶有关。来自四个裂殖酵母和其他真菌物种的相关蛋白的系统发育分析表明,Mag1/Mag2 复制是裂殖酵母属所特有的,很可能发生在其祖先中。Mag1 从 DNA 中切除 N3-和 N7-烷基鸟嘌呤和 1,N(6)-乙烯腺嘌呤,而 Mag2 尽管与 Mag1 具有高度的序列和活性位点相似性,但据报道没有可检测到的烷基嘌呤碱基切除活性。为了理解这种差异,我们确定了结合无碱基 DNA 的 Mag2 的晶体结构,并将其与我们之前确定的 Mag1-DNA 结构进行了比较。与 Mag1 相反,Mag2 不会将无碱基部分翻转到活性位点或稳定损伤 5' 端的 DNA 链,这表明它不能形成催化有效的蛋白-DNA 复合物。Mag1 和 Mag2 与 DNA 双链体相互作用的细微差异说明了 Mag2 如何在不完全结合损伤的情况下在损伤部位停滞。我们通过碱基切除的突变分析测试了我们的结构预测,并发现一个单一的氨基酸至少部分负责 Mag2 缺乏活性。用 Mag1 中的相应丝氨酸取代 Mag2 的 Asp56,该残基在 DNA 嵌入环的底部封闭螺旋,使 Mag2 具有与 Mag1 相当的ɛA 切除活性。这项工作为 HhH 糖苷酶以催化有效的方式与 DNA 结合的化学和物理决定因素提供了新的见解。