Suppr超能文献

大肠杆菌 AlkA 与未受损 DNA 复合物的结构。

Structure of Escherichia coli AlkA in complex with undamaged DNA.

机构信息

Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

J Biol Chem. 2010 Nov 12;285(46):35783-91. doi: 10.1074/jbc.M110.155663. Epub 2010 Sep 15.

Abstract

Because DNA damage is so rare, DNA glycosylases interact for the most part with undamaged DNA. Whereas the structural basis for recognition of DNA lesions by glycosylases has been studied extensively, less is known about the nature of the interaction between these proteins and undamaged DNA. Here we report the crystal structures of the DNA glycosylase AlkA in complex with undamaged DNA. The structures revealed a recognition mode in which the DNA is nearly straight, with no amino acid side chains inserted into the duplex, and the target base pair is fully intrahelical. A comparison of the present structures with that of AlkA recognizing an extrahelical lesion revealed conformational changes in both the DNA and protein as the glycosylase transitions from the interrogation of undamaged DNA to catalysis of nucleobase excision. Modeling studies with the cytotoxic lesion 3-methyladenine and accompanying biochemical experiments suggested that AlkA actively interrogates the minor groove of the DNA while probing for the presence of lesions.

摘要

由于 DNA 损伤非常罕见,因此 DNA 糖苷酶在大多数情况下与未受损的 DNA 相互作用。虽然已经广泛研究了糖苷酶识别 DNA 损伤的结构基础,但对于这些蛋白质与未受损 DNA 之间相互作用的性质知之甚少。在这里,我们报告了与未受损 DNA 结合的 DNA 糖苷酶 AlkA 的晶体结构。这些结构揭示了一种识别模式,其中 DNA 几乎是直的,没有氨基酸侧链插入双链体,并且靶碱基对完全是内环的。将目前的结构与识别非环损伤的 AlkA 结构进行比较,发现当糖苷酶从未受损 DNA 的检测过渡到碱基切除的催化时,DNA 和蛋白质都会发生构象变化。使用具有细胞毒性损伤 3-甲基腺嘌呤的建模研究和伴随的生化实验表明,AlkA 在探测损伤存在的同时,主动探测 DNA 的小沟。

相似文献

1
Structure of Escherichia coli AlkA in complex with undamaged DNA.
J Biol Chem. 2010 Nov 12;285(46):35783-91. doi: 10.1074/jbc.M110.155663. Epub 2010 Sep 15.
2
DNA damage recognition and repair by 3-methyladenine DNA glycosylase I (TAG).
EMBO J. 2007 May 2;26(9):2411-20. doi: 10.1038/sj.emboj.7601649. Epub 2007 Apr 5.
3
Structure of a DNA glycosylase searching for lesions.
Science. 2006 Feb 24;311(5764):1153-7. doi: 10.1126/science.1120288.
4
The Escherichia coli 3-methyladenine DNA glycosylase AlkA has a remarkably versatile active site.
J Biol Chem. 2004 Jun 25;279(26):26876-84. doi: 10.1074/jbc.M403860200. Epub 2004 May 4.
7
Kinetic mechanism for the excision of hypoxanthine by Escherichia coli AlkA and evidence for binding to DNA ends.
Biochemistry. 2011 May 24;50(20):4350-9. doi: 10.1021/bi200232c. Epub 2011 Apr 28.
10
Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase.
Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18497-502. doi: 10.1073/pnas.0902908106. Epub 2009 Oct 19.

引用本文的文献

1
Computational investigations on target-site searching and recognition mechanisms by thymine DNA glycosylase during DNA repair process.
Acta Biochim Biophys Sin (Shanghai). 2022 May 25;54(6):796-806. doi: 10.3724/abbs.2022050.
4
Structural Basis for the Lesion-scanning Mechanism of the MutY DNA Glycosylase.
J Biol Chem. 2017 Mar 24;292(12):5007-5017. doi: 10.1074/jbc.M116.757039. Epub 2017 Jan 27.
5
Finding optimal interaction interface alignments between biological complexes.
Bioinformatics. 2015 Jun 15;31(12):i133-41. doi: 10.1093/bioinformatics/btv242.
6
Conformational Dynamics of DNA Repair by Escherichia coli Endonuclease III.
J Biol Chem. 2015 Jun 5;290(23):14338-49. doi: 10.1074/jbc.M114.621128. Epub 2015 Apr 13.
7
Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging.
Nucleic Acids Res. 2015 Mar 11;43(5):2716-29. doi: 10.1093/nar/gkv139. Epub 2015 Feb 24.
8
Active destabilization of base pairs by a DNA glycosylase wedge initiates damage recognition.
Nucleic Acids Res. 2015 Jan;43(1):272-81. doi: 10.1093/nar/gku1300. Epub 2014 Dec 17.
9
Non-productive DNA damage binding by DNA glycosylase-like protein Mag2 from Schizosaccharomyces pombe.
DNA Repair (Amst). 2013 Mar 1;12(3):196-204. doi: 10.1016/j.dnarep.2012.12.001. Epub 2012 Dec 28.
10
Recent advances in the structural mechanisms of DNA glycosylases.
Biochim Biophys Acta. 2013 Jan;1834(1):247-71. doi: 10.1016/j.bbapap.2012.10.005. Epub 2012 Oct 14.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Hopping enables a DNA repair glycosylase to search both strands and bypass a bound protein.
ACS Chem Biol. 2010 Apr 16;5(4):427-36. doi: 10.1021/cb1000185.
3
Encounter and extrusion of an intrahelical lesion by a DNA repair enzyme.
Nature. 2009 Dec 10;462(7274):762-6. doi: 10.1038/nature08561.
4
Nonspecifically bound proteins spin while diffusing along DNA.
Nat Struct Mol Biol. 2009 Dec;16(12):1224-9. doi: 10.1038/nsmb.1716. Epub 2009 Nov 8.
5
Synthesis and structure of duplex DNA containing the genotoxic nucleobase lesion N7-methylguanine.
J Am Chem Soc. 2008 Sep 3;130(35):11570-1. doi: 10.1021/ja8025328. Epub 2008 Aug 8.
7
Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA.
Nature. 2008 Apr 24;452(7190):961-5. doi: 10.1038/nature06889.
8
Identification of a DNA primase template tracking site redefines the geometry of primer synthesis.
Nat Struct Mol Biol. 2008 Feb;15(2):163-9. doi: 10.1038/nsmb.1373. Epub 2008 Jan 13.
9
Enzymatic capture of an extrahelical thymine in the search for uracil in DNA.
Nature. 2007 Sep 27;449(7161):433-7. doi: 10.1038/nature06131. Epub 2007 Aug 19.
10
DNA damage recognition and repair by 3-methyladenine DNA glycosylase I (TAG).
EMBO J. 2007 May 2;26(9):2411-20. doi: 10.1038/sj.emboj.7601649. Epub 2007 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验