Suppr超能文献

基于置信度的实验室检验项目削减推荐算法。

Confidence-based laboratory test reduction recommendation algorithm.

机构信息

School of Biomedical Informatics, UTHealth, Houston, TX, USA.

Department of Pediatric Surgery, McGovern Medical School, UTHealth, Houston, TX, USA.

出版信息

BMC Med Inform Decis Mak. 2023 May 10;23(1):93. doi: 10.1186/s12911-023-02187-3.

Abstract

BACKGROUND

We propose a new deep learning model to identify unnecessary hemoglobin (Hgb) tests for patients admitted to the hospital, which can help reduce health risks and healthcare costs.

METHODS

We collected internal patient data from a teaching hospital in Houston and external patient data from the MIMIC III database. The study used a conservative definition of unnecessary laboratory tests, which was defined as stable (i.e., stability) and below the lower normal bound (i.e., normality). Considering that machine learning models may yield less reliable results when trained on noisy inputs containing low-quality information, we estimated prediction confidence to assess the reliability of predicted outcomes. We adopted a "select and predict" design philosophy to maximize prediction performance by selectively considering samples with high prediction confidence for recommendations. Our model accommodated irregularly sampled observational data to make full use of variable correlations (i.e., with other laboratory test values) and temporal dependencies (i.e., previous laboratory tests performed within the same encounter) in selecting candidates for training and prediction.

RESULTS

The proposed model demonstrated remarkable Hgb prediction performance, achieving a normality AUC of 95.89% and a Hgb stability AUC of 95.94%, while recommending a reduction of 9.91% of Hgb tests that were deemed unnecessary. Additionally, the model could generalize well to external patients admitted to another hospital.

CONCLUSIONS

This study introduces a novel deep learning model with the potential to significantly reduce healthcare costs and improve patient outcomes by identifying unnecessary laboratory tests for hospitalized patients.

摘要

背景

我们提出了一种新的深度学习模型,用于识别住院患者中不必要的血红蛋白(Hgb)检测,可以帮助降低健康风险和医疗成本。

方法

我们从休斯顿的一家教学医院收集了内部患者数据,并从 MIMIC III 数据库中收集了外部患者数据。该研究采用了保守的实验室检测不必要定义,即稳定(即稳定性)且低于正常下限(即正常性)。考虑到机器学习模型在训练时可能会受到包含低质量信息的嘈杂输入的影响,从而产生不太可靠的结果,我们估计了预测置信度,以评估预测结果的可靠性。我们采用了“选择和预测”的设计理念,通过选择性地考虑具有高预测置信度的样本,来最大程度地提高预测性能,从而为推荐提供建议。我们的模型适应了不规则采样的观测数据,以充分利用变量相关性(即与其他实验室测试值的相关性)和时间依赖性(即在同一就诊期间进行的先前实验室测试),从而选择候选样本进行训练和预测。

结果

所提出的模型在 Hgb 预测方面表现出色,其正常性 AUC 为 95.89%,Hgb 稳定性 AUC 为 95.94%,同时建议减少 9.91%被认为不必要的 Hgb 检测。此外,该模型可以很好地推广到在另一家医院住院的外部患者。

结论

本研究介绍了一种新的深度学习模型,通过识别住院患者中不必要的实验室检测,可以显著降低医疗成本并改善患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1586/10173656/1e32d7c7e6ea/12911_2023_2187_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验