Department of Electronic, Information and Bioengineering, Politecnico di Milano, Milano, Italy
Department of Informatics, Università degli Studi di Torino, Torino, Piemonte, Italy.
BMJ Health Care Inform. 2021 Jan;28(1). doi: 10.1136/bmjhci-2020-100245.
Gastrointestinal (GI) bleeding commonly requires intensive care unit (ICU) in cases of potentialhaemodynamiccompromise or likely urgent intervention. However, manypatientsadmitted to the ICU stop bleeding and do not require further intervention, including blood transfusion. The present work proposes an artificial intelligence (AI) solution for the prediction of rebleeding in patients with GI bleeding admitted to ICU.
A machine learning algorithm was trained and tested using two publicly available ICU databases, the Medical Information Mart for Intensive Care V.1.4 database and eICU Collaborative Research Database using freedom from transfusion as a proxy for patients who potentially did not require ICU-level care. Multiple initial observation time frames were explored using readily available data including labs, demographics and clinical parameters for a total of 20 covariates.
The optimal model used a 5-hour observation period to achieve an area under the curve of the receiving operating curve (ROC-AUC) of greater than 0.80. The model was robust when tested against both ICU databases with a similar ROC-AUC for all.
The potential disruptive impact of AI in healthcare innovation is acknowledge, but awareness of AI-related risk on healthcare applications and current limitations should be considered before implementation and deployment. The proposed algorithm is not meant to replace but to inform clinical decision making. Prospective clinical trial validation as a triage tool is warranted.
胃肠道(GI)出血在存在潜在血流动力学不稳定或可能需要紧急干预的情况下通常需要入住重症监护病房(ICU)。然而,许多入住 ICU 的患者停止出血,不需要进一步干预,包括输血。本研究提出了一种人工智能(AI)解决方案,用于预测入住 ICU 的 GI 出血患者再出血。
使用两个公开的 ICU 数据库,即医疗信息集市用于重症监护 V.1.4 数据库和 eICU 协作研究数据库,使用无输血作为潜在不需要 ICU 级护理的患者的替代指标,使用机器学习算法对其进行训练和测试。使用包括实验室、人口统计学和临床参数在内的现成数据探索了多个初始观察时间段,总共有 20 个协变量。
最优模型使用 5 小时观察期,实现了接收者操作曲线(ROC)曲线下面积(AUC)大于 0.80。该模型在两个 ICU 数据库上进行测试时都具有很强的稳健性,所有模型的 ROC-AUC 相似。
人工智能在医疗保健创新中的潜在颠覆性影响得到了认可,但在实施和部署之前,应该考虑人工智能相关风险对医疗保健应用和当前局限性的认识。所提出的算法不是要取代而是要为临床决策提供信息。需要进行前瞻性临床试验验证作为分诊工具。