Suppr超能文献

从初级运动皮层和后顶叶皮层同时重建连续的手部运动。

Simultaneous reconstruction of continuous hand movements from primary motor and posterior parietal cortex.

机构信息

Department of Neuroscience, Brown University, Providence, RI, USA.

出版信息

Exp Brain Res. 2013 Mar;225(3):361-75. doi: 10.1007/s00221-012-3377-0. Epub 2012 Dec 29.

Abstract

Primary motor cortex (MI) and parietal area PE both participate in cortical control of reaching actions, but few studies have been able to directly compare the form of kinematic encoding in the two areas simultaneously during hand tracking movements. To directly compare kinematic coding properties in these two areas under identical behavioral conditions, we recorded simultaneously from two chronically implanted multielectrode arrays in areas MI and PE (or areas 2/5) during performance of a continuous manual tracking task. Monkeys manually pursued a continuously moving target that followed a series of straight-line movement segments, arranged in a sequence where the direction (but not length) of the upcoming segment varied unpredictably as each new segment appeared. Based on recordings from populations of MI (31-143 units) and PE (22-87 units), we compared hand position and velocity reconstructions based on linear filters. We successfully reconstructed hand position and velocity from area PE (mean r (2) = 0.751 for position reconstruction, r (2) = 0.614 for velocity), demonstrating trajectory reconstruction from each area. Combing these populations provided no reconstruction improvements, suggesting that kinematic representations in MI and PE encode overlapping hand movement information, rather than complementary or unique representations. These overlapping representations may reflect the areas' common engagement in a sensorimotor feedback loop for error signals and movement goals, as required by a task with continuous, time-evolving demands and feedback. The similarity of information in both areas suggests that either area might provide a suitable target to obtain control signals for brain computer interface applications.

摘要

初级运动皮层(MI)和顶叶区 PE 都参与手部运动的皮质控制,但很少有研究能够在进行手跟踪运动时同时直接比较这两个区域的运动学编码形式。为了在相同的行为条件下直接比较这两个区域的运动学编码特性,我们在执行连续手动跟踪任务时同时记录了 MI 和 PE(或 2/5 区)两个慢性植入多电极阵列的记录。猴子手动跟踪一个连续移动的目标,该目标跟随一系列直线运动段,每个新段出现时,下一个段的方向(但不是长度)不可预测地变化。基于 MI(31-143 个单位)和 PE(22-87 个单位)群体的记录,我们比较了基于线性滤波器的手部位置和速度重建。我们成功地从 PE 区重建了手部位置和速度(位置重建的平均 r ² = 0.751,速度重建的 r ² = 0.614),证明了从每个区域的轨迹重建。将这些群体组合在一起没有提供重建改进,这表明 MI 和 PE 中的运动学表示编码了重叠的手部运动信息,而不是互补或独特的表示。这些重叠的表示可能反映了这些区域在连续、随时间演变的需求和反馈任务中共同参与传感器运动反馈回路的情况。这两个区域的信息相似性表明,这两个区域都可以作为脑机接口应用中获得控制信号的合适目标。

相似文献

1
Simultaneous reconstruction of continuous hand movements from primary motor and posterior parietal cortex.
Exp Brain Res. 2013 Mar;225(3):361-75. doi: 10.1007/s00221-012-3377-0. Epub 2012 Dec 29.
2
Spatiotemporal tuning of motor cortical neurons for hand position and velocity.
J Neurophysiol. 2004 Jan;91(1):515-32. doi: 10.1152/jn.00587.2002. Epub 2003 Sep 17.
4
Neurophysiology of prehension. I. Posterior parietal cortex and object-oriented hand behaviors.
J Neurophysiol. 2007 Jan;97(1):387-406. doi: 10.1152/jn.00558.2006. Epub 2006 Sep 13.
5
Reach and gaze representations in macaque parietal and premotor grasp areas.
J Neurosci. 2013 Apr 17;33(16):7038-49. doi: 10.1523/JNEUROSCI.5568-12.2013.
6
Motor cortical representation of hand translation and rotation during reaching.
J Neurosci. 2010 Jan 20;30(3):958-62. doi: 10.1523/JNEUROSCI.3742-09.2010.
8
Parieto-frontal coding of reaching: an integrated framework.
Exp Brain Res. 1999 Dec;129(3):325-46. doi: 10.1007/s002210050902.
10
Encoding of Both Reaching and Grasping Kinematics in Dorsal and Ventral Premotor Cortices.
J Neurosci. 2017 Feb 15;37(7):1733-1746. doi: 10.1523/JNEUROSCI.1537-16.2016. Epub 2017 Jan 11.

引用本文的文献

2
Correlations Between Primary Motor Cortex Activity with Recent Past and Future Limb Motion During Unperturbed Reaching.
J Neurosci. 2018 Sep 5;38(36):7787-7799. doi: 10.1523/JNEUROSCI.2667-17.2018. Epub 2018 Jul 23.
3
Interfacing to the brain's motor decisions.
J Neurophysiol. 2017 Mar 1;117(3):1305-1319. doi: 10.1152/jn.00051.2016. Epub 2016 Dec 21.
4
Primary motor cortex neurons classified in a postural task predict muscle activation patterns in a reaching task.
J Neurophysiol. 2016 Apr;115(4):2021-32. doi: 10.1152/jn.00971.2015. Epub 2016 Feb 3.
5
Joint angles and angular velocities and relevance of eigenvectors during prehension in the monkey.
Exp Brain Res. 2015 Feb;233(2):339-50. doi: 10.1007/s00221-014-4117-4. Epub 2014 Oct 18.
6
Population interactions between parietal and primary motor cortices during reach.
J Neurophysiol. 2014 Dec 1;112(11):2959-84. doi: 10.1152/jn.00851.2012. Epub 2014 Sep 10.
7
Decoding methods for neural prostheses: where have we reached?
Front Syst Neurosci. 2014 Jul 16;8:129. doi: 10.3389/fnsys.2014.00129. eCollection 2014.
8
Online binary decision decoding using functional near-infrared spectroscopy for the development of brain-computer interface.
Exp Brain Res. 2014 Feb;232(2):555-64. doi: 10.1007/s00221-013-3764-1. Epub 2013 Nov 21.

本文引用的文献

2
Neurons in primary motor cortex engaged during action observation.
Eur J Neurosci. 2010 Jan;31(2):386-98. doi: 10.1111/j.1460-9568.2009.07067.x. Epub 2010 Jan 13.
3
Cortical mechanisms for online control of hand movement trajectory: the role of the posterior parietal cortex.
Cereb Cortex. 2009 Dec;19(12):2848-64. doi: 10.1093/cercor/bhp058. Epub 2009 Apr 9.
4
Decoding trajectories from posterior parietal cortex ensembles.
J Neurosci. 2008 Nov 26;28(48):12913-26. doi: 10.1523/JNEUROSCI.1463-08.2008.
5
Functional imaging of the parietal cortex during action execution and observation.
Cereb Cortex. 2009 Mar;19(3):624-39. doi: 10.1093/cercor/bhn116. Epub 2008 Jul 18.
6
Cortical control of a prosthetic arm for self-feeding.
Nature. 2008 Jun 19;453(7198):1098-101. doi: 10.1038/nature06996. Epub 2008 May 28.
7
Forward estimation of movement state in posterior parietal cortex.
Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8170-7. doi: 10.1073/pnas.0802602105. Epub 2008 May 22.
8
A computational neuroanatomy for motor control.
Exp Brain Res. 2008 Mar;185(3):359-81. doi: 10.1007/s00221-008-1280-5. Epub 2008 Feb 5.
9
Congruent activity during action and action observation in motor cortex.
J Neurosci. 2007 Nov 28;27(48):13241-50. doi: 10.1523/JNEUROSCI.2895-07.2007.
10
Automated spike sorting using density grid contour clustering and subtractive waveform decomposition.
J Neurosci Methods. 2007 Aug 15;164(1):1-18. doi: 10.1016/j.jneumeth.2007.03.025. Epub 2007 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验