Suppr超能文献

用于运动控制的计算神经解剖学。

A computational neuroanatomy for motor control.

作者信息

Shadmehr Reza, Krakauer John W

机构信息

Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, 410 Traylor Building, 720 Rutland Ave., Baltimore, MD 21205, USA.

出版信息

Exp Brain Res. 2008 Mar;185(3):359-81. doi: 10.1007/s00221-008-1280-5. Epub 2008 Feb 5.

Abstract

The study of patients to infer normal brain function has a long tradition in neurology and psychology. More recently, the motor system has been subject to quantitative and computational characterization. The purpose of this review is to argue that the lesion approach and theoretical motor control can mutually inform each other. Specifically, one may identify distinct motor control processes from computational models and map them onto specific deficits in patients. Here we review some of the impairments in motor control, motor learning and higher-order motor control in patients with lesions of the corticospinal tract, the cerebellum, parietal cortex, the basal ganglia, and the medial temporal lobe. We attempt to explain some of these impairments in terms of computational ideas such as state estimation, optimization, prediction, cost, and reward. We suggest that a function of the cerebellum is system identification: to build internal models that predict sensory outcome of motor commands and correct motor commands through internal feedback. A function of the parietal cortex is state estimation: to integrate the predicted proprioceptive and visual outcomes with sensory feedback to form a belief about how the commands affected the states of the body and the environment. A function of basal ganglia is related to optimal control: learning costs and rewards associated with sensory states and estimating the "cost-to-go" during execution of a motor task. Finally, functions of the primary and the premotor cortices are related to implementing the optimal control policy by transforming beliefs about proprioceptive and visual states, respectively, into motor commands.

摘要

通过对患者的研究来推断正常脑功能,在神经病学和心理学领域有着悠久的传统。最近,运动系统已成为定量和计算表征的研究对象。本综述的目的是论证损伤方法与理论运动控制可以相互启发。具体而言,可以从计算模型中识别出不同的运动控制过程,并将它们与患者的特定缺陷相对应。在此,我们综述了皮质脊髓束、小脑、顶叶皮质、基底神经节和内侧颞叶受损患者在运动控制、运动学习和高阶运动控制方面的一些损伤情况。我们试图用诸如状态估计、优化、预测、成本和奖励等计算概念来解释其中的一些损伤。我们认为,小脑的一个功能是系统识别:构建内部模型,预测运动指令的感觉结果,并通过内部反馈纠正运动指令。顶叶皮质的一个功能是状态估计:将预测的本体感觉和视觉结果与感觉反馈整合起来,以形成关于指令如何影响身体和环境状态的信念。基底神经节的一个功能与最优控制有关:学习与感觉状态相关的成本和奖励,并在执行运动任务期间估计“未来成本”。最后,初级运动皮质和运动前皮质的功能分别与通过将关于本体感觉和视觉状态的信念转化为运动指令来实施最优控制策略有关。

相似文献

1
A computational neuroanatomy for motor control.
Exp Brain Res. 2008 Mar;185(3):359-81. doi: 10.1007/s00221-008-1280-5. Epub 2008 Feb 5.
2
A Revised Computational Neuroanatomy for Motor Control.
J Cogn Neurosci. 2020 Oct;32(10):1823-1836. doi: 10.1162/jocn_a_01602. Epub 2020 Jul 9.
3
Bilateral basal ganglia activation associated with sensorimotor adaptation.
Exp Brain Res. 2006 Nov;175(3):544-55. doi: 10.1007/s00221-006-0571-y. Epub 2006 Jun 23.
4
Changing brain networks for visuomotor control with increased movement automaticity.
J Neurophysiol. 2004 Oct;92(4):2405-12. doi: 10.1152/jn.01092.2003.
5
Neuroanatomical correlates of motor acquisition and motor transfer.
J Neurophysiol. 2008 Apr;99(4):1836-45. doi: 10.1152/jn.01187.2007. Epub 2008 Feb 13.
6
Brain areas involved in the control of speed during a motor sequence of the foot: real movement versus mental imagery.
J Neuroradiol. 2013 Oct;40(4):267-80. doi: 10.1016/j.neurad.2012.10.001. Epub 2013 Feb 21.
7
Learning from sensory and reward prediction errors during motor adaptation.
PLoS Comput Biol. 2011 Mar;7(3):e1002012. doi: 10.1371/journal.pcbi.1002012. Epub 2011 Mar 10.
8
Brain activation during execution and motor imagery of novel and skilled sequential hand movements.
Neuroimage. 2005 Sep;27(3):505-19. doi: 10.1016/j.neuroimage.2005.04.025.
9
Information processing for motor control in primate premotor cortex.
Behav Brain Res. 1994 Apr 18;61(2):135-42. doi: 10.1016/0166-4328(94)90154-6.
10
The mind's eye: functional MR imaging evaluation of golf motor imagery.
AJNR Am J Neuroradiol. 2003 Jun-Jul;24(6):1036-44.

引用本文的文献

1
The illusion of internal models in biological movement.
Eur J Appl Physiol. 2025 Aug 27. doi: 10.1007/s00421-025-05963-3.
2
Cerebello-Cerebral Pathways Contribute to Written Word Production.
Neurobiol Lang (Camb). 2025 Aug 14;6. doi: 10.1162/nol.a.10. eCollection 2025.
3
Preparation duration shapes the goal-directed tuning of stretch reflex responses.
Exp Brain Res. 2025 Aug 18;243(9):198. doi: 10.1007/s00221-025-07139-z.
4
Neural signatures of online and offline motor learning: An ALE meta-analysis.
Imaging Neurosci (Camb). 2025 Jan 24;3. doi: 10.1162/imag_a_00457. eCollection 2025.
6
Clinical and cognitive assessment in Friedreich ataxia clinical trials: a review.
Front Neurol. 2025 May 22;16:1558493. doi: 10.3389/fneur.2025.1558493. eCollection 2025.
7
A pilot study for self-guided, active robotic training of proprioception of the upper limb in chronic stroke.
J Neuroeng Rehabil. 2025 Jun 7;22(1):130. doi: 10.1186/s12984-025-01660-6.
9
Human Cortico-Cerebellar Dynamics During Motor Error Processing After Stroke.
Hum Brain Mapp. 2025 Jun 1;46(8):e70227. doi: 10.1002/hbm.70227.
10
Success-efficient/failure-safe strategy for hierarchical reinforcement motor learning.
PLoS Comput Biol. 2025 May 9;21(5):e1013089. doi: 10.1371/journal.pcbi.1013089. eCollection 2025 May.

本文引用的文献

1
Internal models in the cerebellum.
Trends Cogn Sci. 1998 Sep 1;2(9):338-47. doi: 10.1016/s1364-6613(98)01221-2.
2
Disruption of state estimation in the human lateral cerebellum.
PLoS Biol. 2007 Nov;5(11):e316. doi: 10.1371/journal.pbio.0050316.
3
Decision theory: what "should" the nervous system do?
Science. 2007 Oct 26;318(5850):606-10. doi: 10.1126/science.1142998.
4
Separate adaptive mechanisms for controlling trajectory and final position in reaching.
J Neurophysiol. 2007 Dec;98(6):3600-13. doi: 10.1152/jn.00121.2007. Epub 2007 Oct 3.
5
Optimal task-dependent changes of bimanual feedback control and adaptation.
Curr Biol. 2007 Oct 9;17(19):1675-9. doi: 10.1016/j.cub.2007.08.051. Epub 2007 Sep 27.
6
Evidence for the flexible sensorimotor strategies predicted by optimal feedback control.
J Neurosci. 2007 Aug 29;27(35):9354-68. doi: 10.1523/JNEUROSCI.1110-06.2007.
7
Why don't we move faster? Parkinson's disease, movement vigor, and implicit motivation.
J Neurosci. 2007 Jul 4;27(27):7105-16. doi: 10.1523/JNEUROSCI.0264-07.2007.
8
Influence of viscous loads on motor planning.
J Neurophysiol. 2007 Aug;98(2):870-7. doi: 10.1152/jn.01126.2006. Epub 2007 May 23.
9
Sensory prediction errors drive cerebellum-dependent adaptation of reaching.
J Neurophysiol. 2007 Jul;98(1):54-62. doi: 10.1152/jn.00266.2007. Epub 2007 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验