Suppr超能文献

使用功能近红外光谱进行在线二进制决策解码,以开发脑机接口。

Online binary decision decoding using functional near-infrared spectroscopy for the development of brain-computer interface.

机构信息

Department of Cogno-Mechatronics Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan, 609-735, Korea,

出版信息

Exp Brain Res. 2014 Feb;232(2):555-64. doi: 10.1007/s00221-013-3764-1. Epub 2013 Nov 21.

Abstract

In this paper, a functional near-infrared spectroscopy (fNIRS)-based online binary decision decoding framework is developed. Fourteen healthy subjects are asked to mentally make "yes" or "no" decisions in answers to the given questions. For obtaining "yes" decoding, the subjects are asked to perform a mental task that causes a cognitive load on the prefrontal cortex, while for making "no" decoding, they are asked to relax. Signals from the prefrontal cortex are collected using continuous-wave near-infrared spectroscopy. It is observed and verified, using the linear discriminant analysis (LDA) and the support vector machine (SVM) classifications, that the cortical hemodynamic responses for making a "yes" decision are distinguishable from those for making a "no" decision. Using mean values of the changes in the concentration of hemoglobin as features, binary decisions are classified into two classes, "yes" and "no," with an average classification accuracy of 74.28% using LDA and 82.14% using SVM. These results demonstrate and suggest the feasibility of fNIRS for a brain-computer interface.

摘要

本文提出了一种基于功能近红外光谱(fNIRS)的在线二进制决策解码框架。要求 14 名健康受试者对所给问题做出“是”或“否”的心理决策。为了进行“是”的解码,要求受试者执行一项心理任务,该任务会对前额叶皮层造成认知负荷,而进行“否”的解码时,要求他们放松。使用连续波近红外光谱仪采集前额叶皮层的信号。通过线性判别分析(LDA)和支持向量机(SVM)分类观察和验证,做出“是”决策的皮质血液动力学反应与做出“否”决策的反应可区分开来。使用血红蛋白浓度变化的平均值作为特征,使用 LDA 将二进制决策分为“是”和“否”两类,平均分类准确率为 74.28%,使用 SVM 为 82.14%。这些结果表明并提示了 fNIRS 在脑机接口中的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验