Suppr超能文献

微管乙酰转移酶 αTAT1 通过其去乙酰化酶活性而非乙酰化活性来稳定微管。

Tubulin acetyltransferase αTAT1 destabilizes microtubules independently of its acetylation activity.

机构信息

Mouse Biology Unit, European Molecular Biology Laboratory, Monterotondo, Rome, Italy.

出版信息

Mol Cell Biol. 2013 Mar;33(6):1114-23. doi: 10.1128/MCB.01044-12. Epub 2012 Dec 28.

Abstract

Acetylation of α-tubulin at lysine 40 (K40) is a well-conserved posttranslational modification that marks long-lived microtubules but has poorly understood functional significance. Recently, αTAT1, a member of the Gcn5-related N-acetyltransferase superfamily, has been identified as an α-tubulin acetyltransferase in ciliated organisms. Here, we explored the function of αTAT1 with the aim of understanding the consequences of αTAT1-mediated microtubule acetylation. We demonstrate that α-tubulin is the major target of αTAT1 but that αTAT1 also acetylates itself in a regulatory mechanism that is required for effective modification of tubulin. We further show that in mammalian cells, αTAT1 promotes microtubule destabilization and accelerates microtubule dynamics. Intriguingly, this effect persists in an αTAT1 mutant with no acetyltransferase activity, suggesting that interaction of αTAT1 with microtubules, rather than acetylation per se, is the critical factor regulating microtubule stability. Our data demonstrate that αTAT1 has cellular functions that extend beyond its classical enzymatic activity as an α-tubulin acetyltransferase.

摘要

α-微管蛋白赖氨酸 40 位乙酰化(K40)是一种广泛存在的翻译后修饰,它标记长寿命的微管,但功能意义尚未完全清楚。最近,Gcn5 相关 N-乙酰转移酶超家族的成员αTAT1 已被鉴定为纤毛生物中的一种α-微管蛋白乙酰转移酶。在这里,我们研究了αTAT1 的功能,旨在了解由αTAT1 介导的微管乙酰化的后果。我们证明α-微管蛋白是αTAT1 的主要靶标,但αTAT1 也通过一种调节机制自身乙酰化,这种调节机制是有效修饰微管所必需的。我们进一步表明,在哺乳动物细胞中,αTAT1 促进微管解稳定化并加速微管动力学。有趣的是,这种效应在没有乙酰转移酶活性的αTAT1 突变体中仍然存在,这表明αTAT1 与微管的相互作用,而不是乙酰化本身,是调节微管稳定性的关键因素。我们的数据表明,αTAT1 具有超越其作为经典α-微管蛋白乙酰转移酶的细胞功能。

相似文献

1
Tubulin acetyltransferase αTAT1 destabilizes microtubules independently of its acetylation activity.
Mol Cell Biol. 2013 Mar;33(6):1114-23. doi: 10.1128/MCB.01044-12. Epub 2012 Dec 28.
2
The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation.
Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21517-22. doi: 10.1073/pnas.1013728107. Epub 2010 Nov 10.
3
αTAT1 is the major α-tubulin acetyltransferase in mice.
Nat Commun. 2013;4:1962. doi: 10.1038/ncomms2962.
4
Mechanism of microtubule lumen entry for the α-tubulin acetyltransferase enzyme αTAT1.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7176-E7184. doi: 10.1073/pnas.1605397113. Epub 2016 Nov 1.
5
Α-tubulin K40 acetylation is required for contact inhibition of proliferation and cell-substrate adhesion.
Mol Biol Cell. 2014 Jun 15;25(12):1854-66. doi: 10.1091/mbc.E13-10-0609. Epub 2014 Apr 17.
7
The role of the α-tubulin acetyltransferase αTAT1 in the DNA damage response.
J Cell Sci. 2020 Sep 4;133(17):jcs246702. doi: 10.1242/jcs.246702.
8
Structure of the α-tubulin acetyltransferase, αTAT1, and implications for tubulin-specific acetylation.
Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19655-60. doi: 10.1073/pnas.1209357109. Epub 2012 Oct 15.
9
αTAT1 catalyses microtubule acetylation at clathrin-coated pits.
Nature. 2013 Oct 24;502(7472):567-70. doi: 10.1038/nature12571. Epub 2013 Oct 6.
10
Marginal band microtubules are acetylated by αTAT1.
Platelets. 2021 May 19;32(4):568-572. doi: 10.1080/09537104.2020.1759791. Epub 2020 May 2.

引用本文的文献

2
Tubulin acetyltransferases access and modify the microtubule luminal K40 residue through anchors in taxane-binding pockets.
Nat Struct Mol Biol. 2025 Feb;32(2):358-368. doi: 10.1038/s41594-024-01406-3. Epub 2024 Nov 4.
3
Extracellular signals induce dynamic ER remodeling through αTAT1-dependent microtubule acetylation.
Neoplasia. 2024 Jul;53:101003. doi: 10.1016/j.neo.2024.101003. Epub 2024 May 16.
4
The α-tubulin acetyltransferase ATAT1: structure, cellular functions, and its emerging role in human diseases.
Cell Mol Life Sci. 2024 Apr 23;81(1):193. doi: 10.1007/s00018-024-05227-x.
5
Effects of Social Defeat Stress on Microtubule Regulating Proteins and Tubulin Polymerization.
Clin Psychopharmacol Neurosci. 2024 Feb 29;22(1):129-138. doi: 10.9758/cpn.23.1077. Epub 2023 Aug 10.
6
Microtubule acetylation dyshomeostasis in Parkinson's disease.
Transl Neurodegener. 2023 May 8;12(1):20. doi: 10.1186/s40035-023-00354-0.
7
Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation.
Biology (Basel). 2023 Apr 6;12(4):561. doi: 10.3390/biology12040561.
8
Role of tubulin post-translational modifications in peripheral neuropathy.
Exp Neurol. 2023 Feb;360:114274. doi: 10.1016/j.expneurol.2022.114274. Epub 2022 Nov 13.
9
Non-catalytic allostery in α-TAT1 by a phospho-switch drives dynamic microtubule acetylation.
J Cell Biol. 2022 Nov 7;221(11). doi: 10.1083/jcb.202202100. Epub 2022 Oct 12.
10
Synaptic branch stability is mediated by non-enzymatic functions of MEC-17/αTAT1 and ATAT-2.
Sci Rep. 2022 Aug 17;12(1):14003. doi: 10.1038/s41598-022-18333-2.

本文引用的文献

1
Atomic resolution structure of human α-tubulin acetyltransferase bound to acetyl-CoA.
Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19649-54. doi: 10.1073/pnas.1209343109. Epub 2012 Oct 15.
2
Structure of the α-tubulin acetyltransferase, αTAT1, and implications for tubulin-specific acetylation.
Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19655-60. doi: 10.1073/pnas.1209357109. Epub 2012 Oct 15.
3
MEC-17 deficiency leads to reduced α-tubulin acetylation and impaired migration of cortical neurons.
J Neurosci. 2012 Sep 12;32(37):12673-83. doi: 10.1523/JNEUROSCI.0016-12.2012.
4
Genetically separable functions of the MEC-17 tubulin acetyltransferase affect microtubule organization.
Curr Biol. 2012 Jun 19;22(12):1057-65. doi: 10.1016/j.cub.2012.03.066. Epub 2012 May 31.
6
A novel acetylation of β-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation.
Mol Biol Cell. 2011 Feb 15;22(4):448-56. doi: 10.1091/mbc.E10-03-0203. Epub 2010 Dec 22.
7
The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation.
Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21517-22. doi: 10.1073/pnas.1013728107. Epub 2010 Nov 10.
8
Quantitative image analysis identifies pVHL as a key regulator of microtubule dynamic instability.
J Cell Biol. 2010 Sep 20;190(6):991-1003. doi: 10.1083/jcb.201006059.
9
MEC-17 is an alpha-tubulin acetyltransferase.
Nature. 2010 Sep 9;467(7312):218-22. doi: 10.1038/nature09324.
10
Analysis of microtubule dynamic instability using a plus-end growth marker.
Nat Methods. 2010 Sep;7(9):761-8. doi: 10.1038/nmeth.1493. Epub 2010 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验