一种用于高电荷量子力学区域的,结合自洽电荷密度泛函紧束缚理论的改进型量子力学/分子力学哈密顿量。
A modified QM/MM Hamiltonian with the Self-Consistent-Charge Density-Functional-Tight-Binding Theory for highly charged QM regions.
作者信息
Hou Guanhua, Zhu Xiao, Elstner Marcus, Cui Qiang
机构信息
Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, 1101 University Ave., Madison, WI 53706.
出版信息
J Chem Theory Comput. 2012 Nov 13;8(11):4293-4304. doi: 10.1021/ct300649f.
To improve the description of electrostatic interaction between QM and MM atoms when the QM is SCC-DFTB, we adopt a Klopman-Ohno (KO) functional form which considers the finite size of the QM and MM charge distributions. Compared to the original implementation that used a simple Coulombic interaction between QM Mulliken and MM point charges, the KO based QM/MM scheme takes charge penetration effect into consideration and therefore significantly improves the description of QM/MM interaction at short range, especially when the QM region is highly charged. To be consistent with the third-order formulation of SCC-DFTB, the Hubbard parameter in the KO functional is dependent on the QM charge. As a result, the effective size of the QM charge distribution naturally adjusts as the QM region undergoes chemical transformations, making the KO based QM/MM scheme particularly attractive for describing chemical reactions in the condensed phase. Together with the van der Waals parameters for the QM atom, the KO based QM/MM model introduces four parameters for each element type. They are fitted here based on microsolvation models of small solutes, focusing on negatively charged molecular ions, for elements O, C, H and P with a specific version of SCC-DFTB (SCC-DFTBPR). Test calculations confirm that the KO based QM/MM scheme significantly improves the interactions between QM and MM atoms over the original point charge based model and it is transferable due to the small number of parameters. The new form of QM/MM Hamiltonian will greatly improve the applicability of SCC-DFTB based QM/MM methods to problems that involve highly charged QM regions, such as enzyme catalyzed phosphoryl transfers.
当量子力学(QM)采用自洽电荷密度泛函紧束缚方法(SCC-DFTB)时,为了改进对QM与分子力学(MM)原子间静电相互作用的描述,我们采用了克洛普曼-大野(KO)泛函形式,该形式考虑了QM和MM电荷分布的有限尺寸。与使用QM穆利肯电荷和MM点电荷之间简单库仑相互作用的原始实现方式相比,基于KO的QM/MM方案考虑了电荷穿透效应,因此显著改善了短程QM/MM相互作用的描述,特别是当QM区域带高电荷时。为了与SCC-DFTB的三阶公式一致,KO泛函中的哈伯德参数取决于QM电荷。因此,随着QM区域发生化学转变,QM电荷分布的有效尺寸会自然调整,这使得基于KO的QM/MM方案在描述凝聚相中的化学反应时特别有吸引力。结合QM原子的范德华参数,基于KO的QM/MM模型为每种元素类型引入了四个参数。这里基于小溶质的微溶剂化模型对它们进行了拟合,重点关注带负电荷的分子离子,针对具有特定版本SCC-DFTB(SCC-DFTBPR)的O、C、H和P元素。测试计算证实,基于KO的QM/MM方案相对于原始的基于点电荷的模型显著改善了QM和MM原子之间的相互作用,并且由于参数数量少,它具有可转移性。新形式的QM/MM哈密顿量将大大提高基于SCC-DFTB的QM/MM方法对涉及高电荷QM区域问题的适用性,例如酶催化的磷酸转移反应。