Department of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin 53706, United States.
J Am Chem Soc. 2011 Sep 28;133(38):14981-97. doi: 10.1021/ja201568s. Epub 2011 Sep 6.
Identifying the group that acts as the proton storage/loading site is a challenging but important problem for understanding the mechanism of proton pumping in biomolecular proton pumps, such as bacteriorhodopsin (bR) and cytochrome c oxidase. Recent experimental studies of bR propelled the idea that the proton storage/release group (PRG) in bR is not an amino acid but a water cluster embedded in the protein. We argue that this idea is at odds with our knowledge of protein electrostatics, since invoking the water cluster as the PRG would require the protein to raise the pK(a) of a hydronium by almost 11 pK(a) units, which is difficult considering known cases of pK(a) shifts in proteins. Our recent quantum mechanics/molecular mechanics (QM/MM) simulations suggested an alternative "intermolecular proton bond" model in which the stored proton is shared between two conserved Glu residues (194 and 204). Here we show that this model leads to microscopic pK(a) values consistent with available experimental data and the functional requirement of a PRG. Extensive QM/MM simulations also show that, independent of a number of technical issues, such as the influence of QM region size, starting X-ray structure, and nuclear quantum effects, the "intermolecular proton bond" model is qualitatively consistent with available spectroscopic data. Potential of mean force calculations show explicitly that the stored proton strongly prefers the pair of Glu residues over the water cluster. The results and analyses help highlight the importance of considering protein electrostatics and provide arguments for why the "intermolecular proton bond" model is likely applicable to the PRG in biomolecular proton pumps in general.
确定作为质子存储/加载位点的基团对于理解生物分子质子泵(如菌紫质(bR)和细胞色素 c 氧化酶)中的质子泵送机制是一个具有挑战性但很重要的问题。最近对 bR 的实验研究推动了这样一种观点,即 bR 中的质子存储/释放基团(PRG)不是氨基酸,而是嵌入蛋白质中的水分子簇。我们认为,这个想法与我们对蛋白质静电学的认识不一致,因为将水分子簇作为 PRG 将要求蛋白质将质子的 pKa 值提高近 11 个 pKa 单位,考虑到已知的蛋白质 pKa 值变化情况,这是很难做到的。我们最近的量子力学/分子力学(QM/MM)模拟提出了一种替代的“分子间质子键”模型,其中存储的质子在两个保守的Glu 残基(194 和 204)之间共享。在这里,我们表明,该模型导致与可用实验数据和 PRG 的功能要求一致的微观 pKa 值。广泛的 QM/MM 模拟还表明,独立于许多技术问题,如 QM 区域大小、起始 X 射线结构和核量子效应的影响,“分子间质子键”模型在定性上与可用的光谱数据一致。平均力势计算明确表明,存储的质子强烈倾向于与一对 Glu 残基而不是水分子簇结合。这些结果和分析有助于强调考虑蛋白质静电学的重要性,并提供了为什么“分子间质子键”模型可能适用于一般生物分子质子泵中 PRG 的论点。