Macdonald Patrick, Johnson Jolene, Smith Elizabeth, Chen Yan, Mueller Joachim D
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
Methods Enzymol. 2013;518:71-98. doi: 10.1016/B978-0-12-388422-0.00004-2.
Brightness analysis provides a powerful tool for the study of protein interactions both in solution and in living cells. We provide a brief survey of some widely used techniques for extracting brightness from fluorescent fluctuation spectroscopy experiments. While all the techniques are equivalent under ideal conditions, we touch upon their relative strengths and discuss in detail a specific scenario wherein the photon-counting histogram (PCH) separates the brightness of rare, bright particles from a dominant background. In a practical vein for ensuring quantitative and unbiased brightness data, we address a number of potential issues stemming from both theoretical assumptions and experimental realities. Two additional issues arising from geometry are examined in greater detail. An oil-immersion objective skews the geometry of the excitation volume as a function of penetration depth. The bias can be characterized and corrected or avoided through the use of a water-immersion objective. Brightness measurements in thin sample geometries, frequently encountered in cells, may be biased. We use z-scan FFS to characterize sample geometry and correct any resulting bias in the brightness.
亮度分析为研究溶液中和活细胞中的蛋白质相互作用提供了一个强大的工具。我们简要概述了一些从荧光涨落光谱实验中提取亮度的广泛使用的技术。虽然在理想条件下所有技术都是等效的,但我们会提及它们的相对优势,并详细讨论一种特定情况,即光子计数直方图(PCH)将罕见的明亮粒子的亮度与占主导的背景区分开来。从实际出发,为确保获得定量且无偏差的亮度数据,我们解决了一些源于理论假设和实验实际情况的潜在问题。对源于几何形状的另外两个问题进行了更详细的研究。油浸物镜会使激发体积的几何形状随穿透深度而发生偏差。可以通过使用水浸物镜来表征、校正或避免这种偏差。在细胞中经常遇到的薄样品几何形状中的亮度测量可能会产生偏差。我们使用z扫描荧光涨落光谱来表征样品几何形状,并校正亮度测量中由此产生的任何偏差。