School of Physics, University of Melbourne; Department of Biochemistry and Pharmacology, University of Melbourne.
Department of Biomedical Engineering, University of California, Irvine.
Biophys J. 2022 Jun 7;121(11):2152-2167. doi: 10.1016/j.bpj.2022.04.030. Epub 2022 Apr 30.
Nuclear proteins can modulate their DNA binding activity and the exploration volume available during DNA target search by self-associating into higher-order oligomers. Directly tracking this process in the nucleoplasm of a living cell is, however, a complex task. Thus, here we present a microscopy method based on radial pair correlation of molecular brightness fluctuations (radial pCOMB) that can extract the mobility of a fluorescently tagged nuclear protein as a function of its oligomeric state and spatiotemporally map the anisotropy of this parameter with respect to nuclear architecture. By simply performing a rapid frame scan acquisition, radial pCOMB has the capacity to detect, within each pixel, protein oligomer formation and the size-dependent obstruction nuclear architecture imparts on this complex's transport across sub-micrometer distances. From application of radial pCOMB to an oligomeric transcription factor and DNA repair protein, we demonstrate that homo-oligomer formation differentially regulates chromatin accessibility and interaction with the DNA template.
核蛋白可以通过自身缔合形成更高阶的寡聚体来调节其与 DNA 的结合活性和在 DNA 靶标搜索过程中的可探索体积。然而,在活细胞的核质中直接跟踪这个过程是一项复杂的任务。因此,在这里我们提出了一种基于分子亮度波动的径向对相关(radial pCOMB)的显微镜方法,该方法可以提取荧光标记的核蛋白的流动性作为其寡聚状态的函数,并在空间和时间上绘制该参数相对于核结构的各向异性。通过简单地执行快速帧扫描采集,radial pCOMB 有能力在每个像素内检测到蛋白质寡聚体的形成以及核结构对这种复合物在亚微米距离上运输的尺寸依赖性阻碍。通过将 radial pCOMB 应用于寡聚转录因子和 DNA 修复蛋白,我们证明同型寡聚体的形成可以不同程度地调节染色质的可及性和与 DNA 模板的相互作用。