Suppr超能文献

测量活细胞中的蛋白质动力学:荧光涨落显微镜技术的实验方案及实际考量

Measuring protein dynamics in live cells: protocols and practical considerations for fluorescence fluctuation microscopy.

作者信息

Youker Robert T, Teng Haibing

机构信息

University of Pittsburgh School of Medicine, Renal-Electrolyte Division, Pittsburgh, Pennsylvania 15261, United StatesbWestern Carolina University, Department of Biology, Cullowhee, North Carolina 28723, United States.

Carnegie Mellon University, Molecular Biosensor and Imaging Center (MBIC), Pittsburgh, Pennsylvania 15213, United States.

出版信息

J Biomed Opt. 2014 Sep;19(9):90801. doi: 10.1117/1.JBO.19.9.090801.

Abstract

Quantitative analysis of protein complex stoichiometries and mobilities are critical for elucidating the mechanisms that regulate cellular pathways. Fluorescence fluctuation spectroscopy (FFS) techniques can measure protein dynamics, such as diffusion coefficients and formation of complexes, with extraordinary precision and sensitivity. Complete calibration and characterization of the microscope instrument is necessary in order to avoid artifacts during data acquisition and to capitalize on the full capabilities of FFS techniques. We provide an overview of the theory behind FFS techniques, discuss calibration procedures, provide protocols, and give practical considerations for performing FFS experiments. One important parameter recovered from FFS measurements is the relative molecular brightness that can correlate with oligomerization. Three methods for measuring molecular brightness (fluorescence correlation spectroscopy, photon-counting histogram, and number and brightness analysis) recover similar values when measuring samples under ideal conditions in vitro. However, examples are given illustrating that these different methods used for calculating molecular brightness of fluorescent molecules in cells are not always equivalent. Methods relying on spot measurements are more prone to bleaching and movement artifacts that can lead to underestimation of brightness values. We advocate for the use of multiple FFS techniques to study molecular brightnesses to overcome and compliment limitations of individual techniques.

摘要

蛋白质复合体化学计量和迁移率的定量分析对于阐明调节细胞通路的机制至关重要。荧光涨落光谱(FFS)技术能够以极高的精度和灵敏度测量蛋白质动力学,如扩散系数和复合体的形成。为避免数据采集过程中出现假象并充分利用FFS技术的全部功能,对显微镜仪器进行全面校准和表征是必要的。我们概述了FFS技术背后的理论,讨论了校准程序,提供了方案,并给出了进行FFS实验的实际注意事项。从FFS测量中获得的一个重要参数是相对分子亮度,它可以与寡聚化相关。在体外理想条件下测量样品时,三种测量分子亮度的方法(荧光相关光谱、光子计数直方图以及数量和亮度分析)得到的数值相似。然而,文中给出的例子表明,这些用于计算细胞中荧光分子亮度的不同方法并不总是等效的。依赖于点测量的方法更容易出现漂白和移动假象,从而可能导致亮度值被低估。我们提倡使用多种FFS技术来研究分子亮度,以克服并补充个别技术的局限性。

相似文献

3
Brightness analysis.
Methods Enzymol. 2013;518:71-98. doi: 10.1016/B978-0-12-388422-0.00004-2.
5
Brightness experiments.
Methods Mol Biol. 2014;1076:699-718. doi: 10.1007/978-1-62703-649-8_32.
7
Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy.
Biophys J. 2002 Jan;82(1 Pt 1):133-44. doi: 10.1016/S0006-3495(02)75380-0.
8
Using enhanced number and brightness to measure protein oligomerization dynamics in live cells.
Nat Protoc. 2019 Feb;14(2):616-638. doi: 10.1038/s41596-018-0111-9.
9
Fluorescence cumulants analysis with non-ideal observation profiles.
Methods Appl Fluoresc. 2015 Nov 26;3(4):045003. doi: 10.1088/2050-6120/3/4/045003.
10
Imaging fluorescence fluctuation spectroscopy: new tools for quantitative bioimaging.
Annu Rev Phys Chem. 2014;65:225-48. doi: 10.1146/annurev-physchem-040513-103641. Epub 2013 Dec 13.

引用本文的文献

1
Dectin-1 multimerization and signaling depends on fungal β-glucan structure and exposure.
Biophys J. 2023 Sep 19;122(18):3749-3767. doi: 10.1016/j.bpj.2023.07.021. Epub 2023 Jul 27.
3
Combined FCS and PCH Analysis to Quantify Protein Dimerization in Living Cells.
Int J Mol Sci. 2021 Jul 7;22(14):7300. doi: 10.3390/ijms22147300.
4
5
Empirical Bayes method using surrounding pixel information for number and brightness analysis.
Biophys J. 2021 Jun 1;120(11):2156-2171. doi: 10.1016/j.bpj.2021.03.033. Epub 2021 Apr 1.
8
Imaging dynamic and selective low-complexity domain interactions that control gene transcription.
Science. 2018 Jul 27;361(6400). doi: 10.1126/science.aar2555. Epub 2018 Jun 21.
9
Fission yeast Myo2: Molecular organization and diffusion in the cytoplasm.
Cytoskeleton (Hoboken). 2018 Apr;75(4):164-173. doi: 10.1002/cm.21425. Epub 2017 Dec 14.
10
Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer.
PLoS One. 2016 Jun 6;11(6):e0155747. doi: 10.1371/journal.pone.0155747. eCollection 2016.

本文引用的文献

1
Altered dynamics of a lipid raft associated protein in a kidney model of Fabry disease.
Mol Genet Metab. 2014 Feb;111(2):184-92. doi: 10.1016/j.ymgme.2013.10.010. Epub 2013 Oct 19.
2
Application limits and data correction in number of molecules and brightness analysis.
Microsc Res Tech. 2013 Nov;76(11):1135-46. doi: 10.1002/jemt.22277. Epub 2013 Aug 12.
4
Multiple motifs regulate apical sorting of p75 via a mechanism that involves dimerization and higher-order oligomerization.
Mol Biol Cell. 2013 Jun;24(12):1996-2007. doi: 10.1091/mbc.E13-02-0078. Epub 2013 May 1.
5
Raster image correlation spectroscopy and number and brightness analysis.
Methods Enzymol. 2013;518:121-44. doi: 10.1016/B978-0-12-388422-0.00006-6.
6
Brightness analysis.
Methods Enzymol. 2013;518:71-98. doi: 10.1016/B978-0-12-388422-0.00004-2.
7
Number and brightness analysis of LRRK2 oligomerization in live cells.
Biophys J. 2012 Jun 6;102(11):L41-3. doi: 10.1016/j.bpj.2012.04.046. Epub 2012 Jun 5.
8
Investigation of Ebola VP40 assembly and oligomerization in live cells using number and brightness analysis.
Biophys J. 2012 Jun 6;102(11):2517-25. doi: 10.1016/j.bpj.2012.04.022. Epub 2012 Jun 5.
10
Fluorescence correlation spectroscopy.
Bioessays. 2012 May;34(5):361-8. doi: 10.1002/bies.201100111. Epub 2012 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验