Youker Robert T, Teng Haibing
University of Pittsburgh School of Medicine, Renal-Electrolyte Division, Pittsburgh, Pennsylvania 15261, United StatesbWestern Carolina University, Department of Biology, Cullowhee, North Carolina 28723, United States.
Carnegie Mellon University, Molecular Biosensor and Imaging Center (MBIC), Pittsburgh, Pennsylvania 15213, United States.
J Biomed Opt. 2014 Sep;19(9):90801. doi: 10.1117/1.JBO.19.9.090801.
Quantitative analysis of protein complex stoichiometries and mobilities are critical for elucidating the mechanisms that regulate cellular pathways. Fluorescence fluctuation spectroscopy (FFS) techniques can measure protein dynamics, such as diffusion coefficients and formation of complexes, with extraordinary precision and sensitivity. Complete calibration and characterization of the microscope instrument is necessary in order to avoid artifacts during data acquisition and to capitalize on the full capabilities of FFS techniques. We provide an overview of the theory behind FFS techniques, discuss calibration procedures, provide protocols, and give practical considerations for performing FFS experiments. One important parameter recovered from FFS measurements is the relative molecular brightness that can correlate with oligomerization. Three methods for measuring molecular brightness (fluorescence correlation spectroscopy, photon-counting histogram, and number and brightness analysis) recover similar values when measuring samples under ideal conditions in vitro. However, examples are given illustrating that these different methods used for calculating molecular brightness of fluorescent molecules in cells are not always equivalent. Methods relying on spot measurements are more prone to bleaching and movement artifacts that can lead to underestimation of brightness values. We advocate for the use of multiple FFS techniques to study molecular brightnesses to overcome and compliment limitations of individual techniques.
蛋白质复合体化学计量和迁移率的定量分析对于阐明调节细胞通路的机制至关重要。荧光涨落光谱(FFS)技术能够以极高的精度和灵敏度测量蛋白质动力学,如扩散系数和复合体的形成。为避免数据采集过程中出现假象并充分利用FFS技术的全部功能,对显微镜仪器进行全面校准和表征是必要的。我们概述了FFS技术背后的理论,讨论了校准程序,提供了方案,并给出了进行FFS实验的实际注意事项。从FFS测量中获得的一个重要参数是相对分子亮度,它可以与寡聚化相关。在体外理想条件下测量样品时,三种测量分子亮度的方法(荧光相关光谱、光子计数直方图以及数量和亮度分析)得到的数值相似。然而,文中给出的例子表明,这些用于计算细胞中荧光分子亮度的不同方法并不总是等效的。依赖于点测量的方法更容易出现漂白和移动假象,从而可能导致亮度值被低估。我们提倡使用多种FFS技术来研究分子亮度,以克服并补充个别技术的局限性。