Herr Natalie Rios, Wightman Robert Mark
The University of North Carolina at Chapel Hill, Department of Chemistry, CB 3290, Chapel Hill, NC 27599-3290, USA.
Front Biosci (Elite Ed). 2013 Jan 1;5(1):249-57. doi: 10.2741/e612.
Dopamine is a neurotransmitter that is utilized in brain circuits associated with reward processing and motor activity. Advances in microelectrode techniques and cyclic voltammetry have enabled its extracellular concentration fluctuations to be examined on a subsecond time scale in the brain of anesthetized and freely moving animals. The microelectrodes can be attached to micropipettes that allow local drug delivery at the site of measurement. Drugs that inhibit dopamine uptake or its autoreceptors can be evaluated while only affecting the brain region directly adjacent to the electrode. The drugs are ejected by iontophoresis in which an electrical current forces the movement of molecules by a combination of electrical migration and electroosmosis. Using electroactive tracer molecules, the amount ejected can be measured with cyclic voltammetry. In this review we will give an introduction to the basic principles of iontophoresis, including a historical account on the development of iontophoresis. It will also include an overview of the use of iontophoresis to study neurotransmission of dopamine in the rat brain. It will close by summarizing the advantages of iontophoresis and how the development of quantitative iontophoresis will facilitate future studies.
多巴胺是一种神经递质,在与奖赏处理和运动活动相关的脑回路中发挥作用。微电极技术和循环伏安法的进步,使得在麻醉和自由活动动物的大脑中,能够在亚秒级时间尺度上检测其细胞外浓度波动。微电极可以连接到微量移液器上,以便在测量部位进行局部药物递送。抑制多巴胺摄取或其自身受体的药物可以在仅影响与电极直接相邻的脑区的情况下进行评估。药物通过离子电渗法排出,在离子电渗法中,电流通过电迁移和电渗作用的组合迫使分子移动。使用电活性示踪分子,可以通过循环伏安法测量排出的量。在这篇综述中,我们将介绍离子电渗法的基本原理,包括离子电渗法发展的历史记录。它还将概述离子电渗法在研究大鼠脑中多巴胺神经传递方面的应用。最后将总结离子电渗法的优点以及定量离子电渗法的发展将如何促进未来的研究。