Suppr超能文献

心肌肌球蛋白结合蛋白 C 的消融可加速工程化心脏组织的收缩动力学。

Ablation of cardiac myosin-binding protein-C accelerates contractile kinetics in engineered cardiac tissue.

机构信息

Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.

出版信息

J Gen Physiol. 2013 Jan;141(1):73-84. doi: 10.1085/jgp.201210837.

Abstract

Hypertrophic cardiomyopathy (HCM) caused by mutations in cardiac myosin-binding protein-C (cMyBP-C) is a heterogenous disease in which the phenotypic presentation is influenced by genetic, environmental, and developmental factors. Though mouse models have been used extensively to study the contractile effects of cMyBP-C ablation, early postnatal hypertrophic and dilatory remodeling may overshadow primary contractile defects. The use of a murine engineered cardiac tissue (mECT) model of cMyBP-C ablation in the present study permits delineation of the primary contractile kinetic abnormalities in an intact tissue model under mechanical loading conditions in the absence of confounding remodeling events. We generated mechanically integrated mECT using isolated postnatal day 1 mouse cardiac cells from both wild-type (WT) and cMyBP-C-null hearts. After culturing for 1 wk to establish coordinated spontaneous contraction, we measured twitch force and Ca(2+) transients at 37°C during pacing at 6 and 9 Hz, with and without dobutamine. Compared with WT, the cMyBP-C-null mECT demonstrated faster late contraction kinetics and significantly faster early relaxation kinetics with no difference in Ca(2+) transient kinetics. Strikingly, the ability of cMyBP-C-null mECT to increase contractile kinetics in response to adrenergic stimulation and increased pacing frequency were severely impaired. We conclude that cMyBP-C ablation results in constitutively accelerated contractile kinetics with preserved peak force with minimal contractile kinetic reserve. These functional abnormalities precede the development of the hypertrophic phenotype and do not result from alterations in Ca(2+) transient kinetics, suggesting that alterations in contractile velocity may serve as the primary functional trigger for the development of hypertrophy in this model of HCM. Our findings strongly support a mechanism in which cMyBP-C functions as a physiological brake on contraction by positioning myosin heads away from the thin filament, a constraint which is removed upon adrenergic stimulation or cMyBP-C ablation.

摘要

心肌肌球蛋白结合蛋白 C(cMyBP-C)突变引起的肥厚型心肌病(HCM)是一种异质性疾病,其表型表现受遗传、环境和发育因素的影响。尽管已广泛使用小鼠模型来研究 cMyBP-C 缺失的收缩作用,但早期出生后肥厚和扩张性重构可能会掩盖主要的收缩缺陷。本研究中使用 cMyBP-C 缺失的小鼠工程化心肌组织(mECT)模型,可以在没有混杂性重构事件的情况下,在机械加载条件下,在完整的组织模型中描绘主要的收缩动力学异常。我们使用来自野生型(WT)和 cMyBP-C 缺失心脏的分离出生后 1 天的小鼠心脏细胞生成了机械整合的 mECT。在培养 1 周以建立协调的自发性收缩后,我们在 37°C 下测量了 6 和 9 Hz 起搏时的收缩力和 Ca(2+)瞬变,同时有无多巴酚丁胺。与 WT 相比,cMyBP-C 缺失的 mECT 表现出更快的晚期收缩动力学,并且早期松弛动力学明显更快,而 Ca(2+)瞬变动力学没有差异。引人注目的是,cMyBP-C 缺失的 mECT 响应肾上腺素刺激和增加起搏频率增加收缩动力学的能力严重受损。我们得出结论,cMyBP-C 缺失导致收缩动力学的固有加速,同时保持峰值力,收缩动力学储备最小。这些功能异常先于肥厚表型的发展,并且不是由于 Ca(2+)瞬变动力学的改变引起的,这表明收缩速度的改变可能是该 HCM 模型中肥厚发展的主要功能触发因素。我们的研究结果强烈支持这样一种机制,即 cMyBP-C 通过将肌球蛋白头部远离细肌丝来作为收缩的生理制动器,这种约束在肾上腺素刺激或 cMyBP-C 缺失时被去除。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fb3/3536521/24998254dfc1/JGP_201210837R_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验