Department of Chemistry, Columbia University, New York, NY 10027, USA.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):870-5. doi: 10.1073/pnas.1213569110. Epub 2012 Dec 31.
We recently introduced fluorescent false neurotransmitters (FFNs) as optical tracers that enable the visualization of neurotransmitter release at individual presynaptic terminals. Here, we describe a pH-responsive FFN probe, FFN102, which as a polar dopamine transporter substrate selectively labels dopamine cell bodies and dendrites in ventral midbrain and dopaminergic synaptic terminals in dorsal striatum. FFN102 exhibits greater fluorescence emission in neutral than acidic environments, and thus affords a means to optically measure evoked release of synaptic vesicle content into the extracellular space. Simultaneously, FFN102 allows the measurement of individual synaptic terminal activity by following fluorescence loss upon stimulation. Thus, FFN102 enables not only the identification of dopamine cells and their processes in brain tissue, but also the optical measurement of functional parameters including dopamine transporter activity and dopamine release at the level of individual synapses. As such, the development of FFN102 demonstrates that, by bringing together organic chemistry and neuroscience, molecular entities can be generated that match the endogenous transmitters in selectivity and distribution, allowing for the study of both the microanatomy and functional plasticity of the normal and diseased nervous system.
我们最近引入了荧光假神经递质 (FFN) 作为光学示踪剂,能够在单个突触前末端可视化神经递质的释放。在这里,我们描述了一种 pH 响应型 FFN 探针 FFN102,它作为一种极性多巴胺转运体底物,选择性标记腹侧中脑的多巴胺细胞体和树突以及背侧纹状体中的多巴胺能突触末端。FFN102 在中性环境中的荧光发射大于酸性环境,因此提供了一种光学测量突触囊泡内容物在细胞外空间中被诱发释放的方法。同时,FFN102 通过在刺激后跟踪荧光损失来允许测量单个突触末端的活动。因此,FFN102 不仅能够识别脑组织中的多巴胺细胞及其过程,还能够光学测量包括多巴胺转运体活性和单个突触水平多巴胺释放在内的功能参数。因此,FFN102 的开发表明,通过将有机化学和神经科学结合起来,可以产生与内源性递质在选择性和分布上相匹配的分子实体,从而能够研究正常和患病神经系统的微观解剖结构和功能可塑性。