Departments of Botany and Plant Pathology and Microbiology, Oregon State University, Corvallis, OR 97331, USA.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1006-11. doi: 10.1073/pnas.1214272110. Epub 2012 Dec 31.
The ammonia-oxidizing archaea have recently been recognized as a significant component of many microbial communities in the biosphere. Although the overall stoichiometry of archaeal chemoautotrophic growth via ammonia (NH(3)) oxidation to nitrite (NO(2)(-)) is superficially similar to the ammonia-oxidizing bacteria, genome sequence analyses point to a completely unique biochemistry. The only genomic signature linking the bacterial and archaeal biochemistries of NH(3) oxidation is a highly divergent homolog of the ammonia monooxygenase (AMO). Although the presumptive product of the putative AMO is hydroxylamine (NH(2)OH), the absence of genes encoding a recognizable ammonia-oxidizing bacteria-like hydroxylamine oxidoreductase complex necessitates either a novel enzyme for the oxidation of NH(2)OH or an initial oxidation product other than NH(2)OH. We now show through combined physiological and stable isotope tracer analyses that NH(2)OH is both produced and consumed during the oxidation of NH(3) to NO(2)(-) by Nitrosopumilus maritimus, that consumption is coupled to energy conversion, and that NH(2)OH is the most probable product of the archaeal AMO homolog. Thus, despite their deep phylogenetic divergence, initial oxidation of NH(3) by bacteria and archaea appears mechanistically similar. They however diverge biochemically at the point of oxidation of NH(2)OH, the archaea possibly catalyzing NH(2)OH oxidation using a novel enzyme complex.
氨氧化古菌最近被认为是生物圈中许多微生物群落的重要组成部分。尽管通过氨(NH3)氧化为亚硝酸盐(NO2-)的古菌化能自养生长的总体化学计量学与氨氧化细菌表面上相似,但基因组序列分析表明其具有完全独特的生物化学特性。将细菌和古菌氨氧化生物化学联系起来的唯一基因组特征是氨单加氧酶(AMO)的高度分化同源物。尽管假定 AMO 的产物是羟胺(NH2OH),但缺乏编码可识别的氨氧化细菌样羟胺氧化还原酶复合物的基因,这需要一种新型酶来氧化 NH2OH 或除 NH2OH 以外的初始氧化产物。我们现在通过联合生理和稳定同位素示踪分析表明,在 Nitrosopumilus maritimus 将 NH3氧化为 NO2-的过程中,NH2OH 既被产生又被消耗,消耗与能量转换相关,并且 NH2OH 是古菌 AMO 同源物的最可能产物。因此,尽管它们在系统发育上存在深刻分歧,但细菌和古菌最初的 NH3氧化在机制上似乎相似。然而,它们在 NH2OH 的氧化点上发生了生物化学上的分歧,古菌可能使用新型酶复合物来催化 NH2OH 的氧化。