Suppr超能文献

氨氧化菌高效高产甲醇。

High-rate, high-yield production of methanol by ammonia-oxidizing bacteria.

机构信息

Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States.

出版信息

Environ Sci Technol. 2013 Apr 2;47(7):3167-73. doi: 10.1021/es3042912. Epub 2013 Mar 21.

Abstract

The overall goal of this study was to develop an appropriate biological process for achieving autotrophic conversion of methane (CH(4)) to methanol (CH3OH). In this study, we employed ammonia-oxidizing bacteria (AOB) to selectively and partially oxidize CH(4) to CH(3)OH. In fed-batch reactors using mixed nitrifying enrichment cultures from a continuous bioreactor, up to 59.89 ± 1.12 mg COD/L of CH(3)OH was produced within an incubation time of 7 h, which is approximately ten times the yield obtained previously using pure cultures of Nitrosomonas europaea. The maximum specific rate of CH(4) to CH(3)OH conversion obtained during this study was 0.82 mg CH(3)OH COD/mg AOB biomass COD-d, which is 1.5 times the highest value reported with pure cultures. Notwithstanding these positive results, CH(4) oxidation to CH(3)OH by AOB was inhibited by NH(3) (the primary substrate for the oxidative enzyme, ammonia monooxygenase, AMO) as well as the product, CH(3)OH, itself. Further, oxidation of CH(4) to CH(3)OH by AOB was also limited by reducing equivalents supply, which could be overcome by externally supplying hydroxylamine (NH(2)OH) as an electron donor. Therefore, a potential optimum design for promoting CH(4) to CH(3)OH oxidation by AOB could involve supplying NH(3) (needed to maintain AMO activity) uncoupled from the supply of NH(2)OH and CH(4). Partial oxidation of CH(4)-containing gases to CH3OH by AOB represents an attractive platform for the conversion of a gaseous mixture to an aqueous compound, which could be used as a commodity chemical. Alternately, the nitrate and CH(3) OH thus produced could be channeled to a downstream anoxic zone in a biological nitrogen removal process to effect nitrate reduction to N(2), using an internally produced organic electron donor.

摘要

本研究的总体目标是开发一种合适的生物过程,以实现甲烷(CH(4))到甲醇(CH3OH)的自养转化。在本研究中,我们利用氨氧化细菌(AOB)选择性地部分氧化 CH(4)为 CH(3)OH。在使用连续生物反应器中的混合硝化富集培养物进行的分批进料反应器中,在 7 小时的孵育时间内,产生了高达 59.89 ± 1.12 mg COD/L 的 CH(3)OH,这大约是之前使用纯培养的硝化单胞菌获得的产量的十倍。在本研究中获得的最大 CH(4)到 CH(3)OH 转化比速率为 0.82 mg CH(3)OH COD/mg AOB 生物质 COD-d,是使用纯培养物获得的最高值的 1.5 倍。尽管取得了这些积极的结果,但 AOB 对 CH(4)到 CH(3)OH 的氧化受到 NH(3)(氧化酶氨单加氧酶,AMO 的主要底物)以及产物 CH(3)OH 本身的抑制。此外,AOB 对 CH(4)到 CH(3)OH 的氧化也受到还原当量供应的限制,通过外部供应羟胺(NH(2)OH)作为电子供体可以克服这一限制。因此,促进 AOB 将 CH(4)氧化为 CH(3)OH 的潜在最佳设计可能涉及不与 NH(2)OH 和 CH(4)的供应偶联地供应 NH(3)(需要维持 AMO 活性)。AOB 对含 CH(4)气体的部分氧化为 CH3OH 代表了将气体混合物转化为水溶液化合物的有吸引力的平台,可将其用作商品化学品。或者,因此产生的硝酸盐和 CH(3)OH 可以被引导到生物脱氮过程中的下游缺氧区,以使用内部产生的有机电子供体将硝酸盐还原为 N(2)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验