Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA.
J Pharm Sci. 2013 Mar;102(3):876-91. doi: 10.1002/jps.23353. Epub 2012 Dec 20.
Amorphous drug dispersions are frequently employed to enhance solubility and dissolution of poorly water-soluble drugs and thereby increase their oral bioavailability. Because these systems are metastable, phase separation of the amorphous components and subsequent drug crystallization may occur during storage. Computational methods to determine the likelihood of these events would be very valuable, if their reliability could be validated. This study investigates amorphous systems of indomethacin (IMC) in poly(vinylpyrrolidone) (PVP) and their molecular interactions by means of molecular dynamics (MD) simulations. IMC and PVP molecules were constructed using X-ray diffraction data, and force-field parameters were assigned by analogy with similar groups in Amber-ff03. Five assemblies varying in PVP and IMC composition were equilibrated in their molten states then cooled at a rate of 0.03 K/ps to generate amorphous glasses. Prolonged aging dynamic runs (100 ns) at 298 K and 1 bar were then carried out, from which solubility parameters, the Flory-Huggins interaction parameter, and associated hydrogen bonding properties were obtained. Calculated glass transition temperature (T(g)) values were higher than experimental results because of the faster cooling rates in MD simulations. Molecular mobility as characterized by atomic fluctuations was substantially reduced below the T(g) with IMC-PVP systems exhibiting lower mobilities than that found in amorphous IMC, consistent with the antiplasticizing effect of PVP. The number of IMC-IMC hydrogen bonds (HBs) formed per IMC molecule was substantially lower in IMC-PVP mixtures, particularly the fractions of IMC molecules involved in two or three HBs with other IMC molecules that may be potential precursors for crystal growth. The loss of HBs between IMC molecules in the presence of PVP was largely compensated for by the formation of IMC-PVP HBs. The difference (6.5 MPa(1/2)) between the solubility parameters in amorphous IMC (25.5 MPa(1/2)) and PVP (19.0 MPa(1/2)) suggests a small, positive free energy of mixing, although it is close to the criterion for miscibility (<7 MPa(1/2)). In contrast to the solubility-parameter method, the calculated Flory-Huggins interaction parameter (-0.61 ± 0.25), which takes into account the IMC-PVP interaction energy, predicts complete miscibility at all PVP compositions, in agreement with experimental observations. These results from MD simulations were combined with experimental values for the crystalline γ-polymorph of IMC and amorphous IMC to estimate the solubility of IMC in amorphous PVP dispersions and the theoretical enhancement in the aqueous solubility of IMC molecularly dispersed in PVP at various volume fractions.
无定形药物分散体常用于提高疏水性差的药物的溶解度和溶解速率,从而提高其口服生物利用度。由于这些系统是亚稳的,因此在储存过程中,无定形成分可能会发生相分离,随后药物结晶。如果能够验证其可靠性,那么用于确定这些事件发生可能性的计算方法将非常有价值。本研究通过分子动力学(MD)模拟研究了吲哚美辛(IMC)在聚乙烯吡咯烷酮(PVP)中的无定形系统及其分子相互作用。使用 X 射线衍射数据构建了 IMC 和 PVP 分子,并用类似 Amber-ff03 中相似基团的方法分配了力场参数。在熔融状态下平衡了五种组成不同的 PVP 和 IMC 组成的混合物,然后以 0.03 K/ps 的冷却速率冷却,生成无定形玻璃。然后在 298 K 和 1 bar 下进行了长时间的老化动力学运行(100 ns),从中获得了溶解度参数、Flory-Huggins 相互作用参数和相关氢键性质。由于 MD 模拟中的冷却速率较快,计算得到的玻璃化转变温度(Tg)值高于实验结果。原子波动特征表明,随着 IMC-PVP 系统的分子流动性明显低于 Tg,其分子流动性明显降低,表现出低于无定形 IMC 的流动性,这与 PVP 的抗塑化作用一致。与无定形 IMC 相比,形成每个 IMC 分子的 IMC-IMC 氢键(HB)的数量在 IMC-PVP 混合物中要低得多,特别是涉及两个或三个与其他 IMC 分子形成 HB 的 IMC 分子的分数,这些分子可能是晶体生长的潜在前体。在 PVP 存在下,IMC 分子之间的 HB 丢失在很大程度上被 IMC-PVP HB 的形成所补偿。无定形 IMC(25.5 MPa(1/2)) 和 PVP(19.0 MPa(1/2))之间溶解度参数的差值(6.5 MPa(1/2))表明混合的自由能很小,为正值,尽管它接近混溶性的标准(<7 MPa(1/2))。与溶解度参数方法相反,计算得到的 Flory-Huggins 相互作用参数(-0.61 ± 0.25)考虑了 IMC-PVP 相互作用能,预测在所有 PVP 组成下完全混溶,这与实验观察结果一致。将这些 MD 模拟结果与 IMC 的结晶 γ-多晶型和无定形 IMC 的实验值结合起来,估算了 IMC 在无定形 PVP 分散体中的溶解度以及 PVP 中 IMC 分子分散体在不同体积分数下在水中的理论溶解度提高。