Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
Biochemistry. 2013 Jan 29;52(4):640-52. doi: 10.1021/bi301358a. Epub 2013 Jan 18.
Knowledge of the structure and dynamics of the ligand channel(s) in heme-copper oxidases is critical for understanding how the protein environment modulates the functions of these enzymes. Using photolabile NO and O(2) carriers, we recently found that NO and O(2) binding in Thermus thermophilus (Tt) ba(3) is ~10 times faster than in the bovine enzyme, indicating that inherent structural differences affect ligand access in these enzymes. Using X-ray crystallography, time-resolved optical absorption measurements, and theoretical calculations, we investigated ligand access in wild-type Tt ba(3) and the mutants, Y133W, T231F, and Y133W/T231F, in which tyrosine and threonine in the O(2) channel of Tt ba(3) are replaced by the corresponding bulkier tryptophan and phenylalanine, respectively, present in the aa(3) enzymes. NO binding in Y133W and Y133W/T231F was found to be 5 times slower than in wild-type ba(3) and the T231F mutant. The results show that the Tt ba(3) Y133W mutation and the bovine W126 residue physically impede NO access to the binuclear center. In the bovine enzyme, there is a hydrophobic "way station", which may further slow ligand access to the active site. Classical simulations of diffusion of Xe to the active sites in ba(3) and bovine aa(3) show conformational freedom of the bovine F238 and the F231 side chain of the Tt ba(3) Y133W/T231F mutant, with both residues rotating out of the ligand channel, resulting in no effect on ligand access in either enzyme.
了解血红素铜氧化酶中配体通道的结构和动态对于理解蛋白质环境如何调节这些酶的功能至关重要。使用光不稳定的 NO 和 O2 载体,我们最近发现 Thermus thermophilus (Tt) ba(3) 中的 NO 和 O2 结合速度比牛酶快约 10 倍,这表明固有结构差异会影响这些酶中的配体进入。我们使用 X 射线晶体学、时间分辨光吸收测量和理论计算研究了野生型 Tt ba(3)及其突变体 Y133W、T231F 和 Y133W/T231F 中配体的进入情况,其中 Tt ba(3) O2 通道中的酪氨酸和苏氨酸分别被相应的较大的色氨酸和苯丙氨酸取代,这些氨基酸存在于 aa(3)酶中。发现 Y133W 和 Y133W/T231F 中的 NO 结合速度比野生型 ba(3)和 T231F 突变体慢 5 倍。结果表明,Tt ba(3)的 Y133W 突变和牛 W126 残基在物理上阻碍了 NO 进入双核中心。在牛酶中,存在一个疏水性的“停靠站”,这可能进一步减缓配体进入活性位点的速度。对 Xe 扩散到 ba(3)和牛 aa(3)的活性位点的经典模拟表明,ba(3)和 Tt ba(3) Y133W/T231F 突变体的 F238 和 F231 侧链具有构象自由度,这两个残基都从配体通道中旋转出来,因此对两种酶中的配体进入都没有影响。