Suppr超能文献

顺磁有机钴胶囊揭示氙气主体-客体化学。

Paramagnetic Organocobalt Capsule Revealing Xenon Host-Guest Chemistry.

出版信息

Inorg Chem. 2020 Oct 5;59(19):13831-13844. doi: 10.1021/acs.inorgchem.9b03634. Epub 2020 Mar 24.

Abstract

We investigated Xe binding in a previously reported paramagnetic metal-organic tetrahedral capsule, [CoL], where L = 4,4'-bis[(2-pyridinylmethylene)amino][1,1'-biphenyl]-2,2'-disulfonate. The Xe-inclusion complex, [XeCoL], was confirmed by H NMR spectroscopy to be the dominant species in aqueous solution saturated with Xe gas. The measured Xe dissociation rate in [XeCoL], = 4.45(5) × 10 s, was at least 40 times greater than that in the analogous [XeFeL] complex, highlighting the capability of metal-ligand interactions to tune the capsule size and guest permeability. The rapid exchange of Xe nuclei in [XeCoL] produced significant hyperpolarized Xe chemical exchange saturation transfer (hyper-CEST) NMR signal at 298 K, detected at a concentration of [XeCoL] as low as 100 pM, with presaturation at -89 ppm, which was referenced to solvated Xe in HO. The saturation offset was highly temperature-dependent with a slope of -0.41(3) ppm/K, which is attributed to hyperfine interactions between the encapsulated Xe nucleus and electron spins on the four Co centers. As such, [XeCoL] represents the first example of a paramagnetic hyper-CEST (paraHYPERCEST) sensor. Remarkably, the hyper-CEST Xe NMR resonance for [XeCoL] (δ = -89 ppm) was shifted 105 ppm upfield from the diamagnetic analogue [XeFeL] (δ = +16 ppm). The Xe inclusion complex was further characterized in the crystal structure of (C(NH))[XeCoL]·75 HO (). Hydrogen bonding between capsule-linker sulfonate groups and exogenous guanidinium cations, (C(NH)), stabilized capsule-capsule interactions in the solid state and also assisted in trapping a Xe atom (∼42 Å) in the large (135 Å) cavity of . Magnetic susceptibility measurements confirmed the presence of four noninteracting, magnetically anisotropic high-spin Co centers in . Furthermore, [CoL] was found to be stable toward aggregation and oxidation, and the CEST performance of [XeCoL] was unaffected by biological macromolecules in HO. These results recommend metal-organic capsules for fundamental investigations of Xe host-guest chemistry as well as applications with highly sensitive Xe-based sensors.

摘要

我们研究了先前报道的顺磁金属有机四面体型胶囊[CoL]中 Xe 的结合情况,其中 L = 4,4'-双[(2-吡啶基亚甲基)氨基][1,1'-联苯]-2,2'-二磺酸根。在饱和 Xe 气的水溶液中,通过 H NMR 光谱证实了 Xe 包合物[XeCoL]是主要物种。在[XeCoL]中测量的 Xe 离解速率为= 4.45(5)×10 s ,至少比类似的[XeFeL]配合物快 40 倍,这突出了金属-配体相互作用调节胶囊尺寸和客体渗透性的能力。[XeCoL]中 Xe 核的快速交换在 298 K 时产生了显著的超极化 Xe 化学交换饱和转移(hyper-CEST)NMR 信号,在[XeCoL]的浓度低至 100 pM 时即可检测到,在-89 ppm 处进行预饱和,该值参考了 HO 中的溶剂化 Xe。饱和偏移与温度高度相关,斜率为-0.41(3)ppm/K,这归因于被包裹的 Xe 核与四个 Co 中心上的电子自旋之间的超精细相互作用。因此,[XeCoL]代表了第一个顺磁超极化 CEST(paraHYPERCEST)传感器的实例。值得注意的是,[XeCoL]的超极化 CEST Xe NMR 共振(δ = -89 ppm)比顺磁类似物[XeFeL](δ = +16 ppm)向上场移动了 105 ppm。Xe 包合物进一步通过(C(NH))[XeCoL]·75 HO ()的晶体结构进行了表征。胶囊连接体磺酸盐基团和外源胍阳离子(C(NH))之间的氢键稳定了固态胶囊-胶囊相互作用,并协助捕获 Xe 原子(约 42 Å)在大(135 Å)空腔中。磁导率测量证实了存在四个非相互作用的、磁各向异性的高自旋 Co 中心。此外,发现[CoL]对聚集和氧化稳定,并且[XeCoL]的 CEST 性能不受 HO 中生物大分子的影响。这些结果表明,金属有机胶囊适用于 Xe 主体-客体化学的基础研究以及具有高灵敏度 Xe 基传感器的应用。

相似文献

1
Paramagnetic Organocobalt Capsule Revealing Xenon Host-Guest Chemistry.
Inorg Chem. 2020 Oct 5;59(19):13831-13844. doi: 10.1021/acs.inorgchem.9b03634. Epub 2020 Mar 24.
2
Paramagnetic Shifts and Guest Exchange Kinetics in CoFe Metal-Organic Capsules.
Inorg Chem. 2020 Sep 8;59(17):12758-12767. doi: 10.1021/acs.inorgchem.0c01816. Epub 2020 Aug 27.
3
Utilizing a water-soluble cryptophane with fast xenon exchange rates for picomolar sensitivity NMR measurements.
Anal Chem. 2012 Nov 20;84(22):9935-41. doi: 10.1021/ac302347y. Epub 2012 Nov 6.
4
An Expanded Palette of Xenon-129 NMR Biosensors.
Acc Chem Res. 2016 Oct 18;49(10):2179-2187. doi: 10.1021/acs.accounts.6b00309. Epub 2016 Sep 19.
7
Programming xenon diffusion in maltose-binding protein.
Biophys J. 2022 Dec 6;121(23):4635-4643. doi: 10.1016/j.bpj.2022.10.025. Epub 2022 Oct 20.
8
Continuous-wave saturation considerations for efficient xenon depolarization.
NMR Biomed. 2015 Jun;28(6):601-6. doi: 10.1002/nbm.3307. Epub 2015 Apr 21.
9
Exploring surfaces and cavities in lipoxygenase and other proteins by hyperpolarized xenon-129 NMR.
J Am Chem Soc. 1999 Oct 13;121(40):9370-7. doi: 10.1021/ja991443+.
10
Quantitative evaluation of pulmonary gas-exchange function using hyperpolarized Xe CEST MRS and MRI.
NMR Biomed. 2018 Sep;31(9):e3961. doi: 10.1002/nbm.3961. Epub 2018 Jul 24.

引用本文的文献

2
Ultrasensitive Xe Magnetic Resonance Imaging: From Clinical Monitoring to Molecular Sensing.
Adv Sci (Weinh). 2025 Feb;12(8):e2413426. doi: 10.1002/advs.202413426. Epub 2025 Jan 21.
4
Thermally Tunable Adsorption of Xenon in Crystalline Molecular Sorbent.
J Phys Chem C Nanomater Interfaces. 2023 Jul 20;127(28):13810-13816. doi: 10.1021/acs.jpcc.3c02054. Epub 2023 Jul 10.
6
Photocatalysis in Water-Soluble Supramolecular Metal Organic Complex.
Molecules. 2023 May 12;28(10):4068. doi: 10.3390/molecules28104068.
7
Programming xenon diffusion in maltose-binding protein.
Biophys J. 2022 Dec 6;121(23):4635-4643. doi: 10.1016/j.bpj.2022.10.025. Epub 2022 Oct 20.
8
10
Cryptophane-xenon complexes for Xe MRI applications.
RSC Adv. 2021;11(13):7693-7703. doi: 10.1039/d0ra10765d. Epub 2021 Feb 17.

本文引用的文献

1
High-Pressure in Situ Xe NMR Spectroscopy: Insights into Switching Mechanisms of Flexible Metal-Organic Frameworks Isoreticular to DUT-49.
Chem Mater. 2019 Aug 27;31(16):6193-6201. doi: 10.1021/acs.chemmater.9b02003. Epub 2019 Jul 24.
3
Diverse cardiopulmonary diseases are associated with distinct xenon magnetic resonance imaging signatures.
Eur Respir J. 2019 Dec 12;54(6). doi: 10.1183/13993003.00831-2019. Print 2019 Dec.
4
A Robust Squarate-Based Metal-Organic Framework Demonstrates Record-High Affinity and Selectivity for Xenon over Krypton.
J Am Chem Soc. 2019 Jun 12;141(23):9358-9364. doi: 10.1021/jacs.9b03422. Epub 2019 May 24.
5
Enantiopure [Cs/Xe⊂Cryptophane]⊂FeL Hierarchical Superstructures.
J Am Chem Soc. 2019 May 22;141(20):8339-8345. doi: 10.1021/jacs.9b02866. Epub 2019 May 9.
6
Rotaxane Probes for the Detection of Hydrogen Peroxide by Xe HyperCEST NMR Spectroscopy.
Angew Chem Int Ed Engl. 2019 Jul 15;58(29):9948-9953. doi: 10.1002/anie.201903045. Epub 2019 Jun 11.
7
Waterproof architectures through subcomponent self-assembly.
Chem Sci. 2018 Dec 12;10(7):2006-2018. doi: 10.1039/c8sc05085f. eCollection 2019 Feb 21.
8
Photochemical Properties of Host-Guest Supramolecular Systems with Structurally Confined Metal-Organic Capsules.
Acc Chem Res. 2019 Jan 15;52(1):100-109. doi: 10.1021/acs.accounts.8b00463. Epub 2018 Dec 26.
10
Xe affinities of water-soluble cryptophanes and the role of confined water.
Chem Sci. 2015 Dec 1;6(12):7238-7248. doi: 10.1039/c5sc02401c. Epub 2015 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验