Inorg Chem. 2020 Oct 5;59(19):13831-13844. doi: 10.1021/acs.inorgchem.9b03634. Epub 2020 Mar 24.
We investigated Xe binding in a previously reported paramagnetic metal-organic tetrahedral capsule, [CoL], where L = 4,4'-bis[(2-pyridinylmethylene)amino][1,1'-biphenyl]-2,2'-disulfonate. The Xe-inclusion complex, [XeCoL], was confirmed by H NMR spectroscopy to be the dominant species in aqueous solution saturated with Xe gas. The measured Xe dissociation rate in [XeCoL], = 4.45(5) × 10 s, was at least 40 times greater than that in the analogous [XeFeL] complex, highlighting the capability of metal-ligand interactions to tune the capsule size and guest permeability. The rapid exchange of Xe nuclei in [XeCoL] produced significant hyperpolarized Xe chemical exchange saturation transfer (hyper-CEST) NMR signal at 298 K, detected at a concentration of [XeCoL] as low as 100 pM, with presaturation at -89 ppm, which was referenced to solvated Xe in HO. The saturation offset was highly temperature-dependent with a slope of -0.41(3) ppm/K, which is attributed to hyperfine interactions between the encapsulated Xe nucleus and electron spins on the four Co centers. As such, [XeCoL] represents the first example of a paramagnetic hyper-CEST (paraHYPERCEST) sensor. Remarkably, the hyper-CEST Xe NMR resonance for [XeCoL] (δ = -89 ppm) was shifted 105 ppm upfield from the diamagnetic analogue [XeFeL] (δ = +16 ppm). The Xe inclusion complex was further characterized in the crystal structure of (C(NH))[XeCoL]·75 HO (). Hydrogen bonding between capsule-linker sulfonate groups and exogenous guanidinium cations, (C(NH)), stabilized capsule-capsule interactions in the solid state and also assisted in trapping a Xe atom (∼42 Å) in the large (135 Å) cavity of . Magnetic susceptibility measurements confirmed the presence of four noninteracting, magnetically anisotropic high-spin Co centers in . Furthermore, [CoL] was found to be stable toward aggregation and oxidation, and the CEST performance of [XeCoL] was unaffected by biological macromolecules in HO. These results recommend metal-organic capsules for fundamental investigations of Xe host-guest chemistry as well as applications with highly sensitive Xe-based sensors.
我们研究了先前报道的顺磁金属有机四面体型胶囊[CoL]中 Xe 的结合情况,其中 L = 4,4'-双[(2-吡啶基亚甲基)氨基][1,1'-联苯]-2,2'-二磺酸根。在饱和 Xe 气的水溶液中,通过 H NMR 光谱证实了 Xe 包合物[XeCoL]是主要物种。在[XeCoL]中测量的 Xe 离解速率为= 4.45(5)×10 s ,至少比类似的[XeFeL]配合物快 40 倍,这突出了金属-配体相互作用调节胶囊尺寸和客体渗透性的能力。[XeCoL]中 Xe 核的快速交换在 298 K 时产生了显著的超极化 Xe 化学交换饱和转移(hyper-CEST)NMR 信号,在[XeCoL]的浓度低至 100 pM 时即可检测到,在-89 ppm 处进行预饱和,该值参考了 HO 中的溶剂化 Xe。饱和偏移与温度高度相关,斜率为-0.41(3)ppm/K,这归因于被包裹的 Xe 核与四个 Co 中心上的电子自旋之间的超精细相互作用。因此,[XeCoL]代表了第一个顺磁超极化 CEST(paraHYPERCEST)传感器的实例。值得注意的是,[XeCoL]的超极化 CEST Xe NMR 共振(δ = -89 ppm)比顺磁类似物[XeFeL](δ = +16 ppm)向上场移动了 105 ppm。Xe 包合物进一步通过(C(NH))[XeCoL]·75 HO ()的晶体结构进行了表征。胶囊连接体磺酸盐基团和外源胍阳离子(C(NH))之间的氢键稳定了固态胶囊-胶囊相互作用,并协助捕获 Xe 原子(约 42 Å)在大(135 Å)空腔中。磁导率测量证实了存在四个非相互作用的、磁各向异性的高自旋 Co 中心。此外,发现[CoL]对聚集和氧化稳定,并且[XeCoL]的 CEST 性能不受 HO 中生物大分子的影响。这些结果表明,金属有机胶囊适用于 Xe 主体-客体化学的基础研究以及具有高灵敏度 Xe 基传感器的应用。