Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, Maryland, United States of America.
PLoS One. 2012;7(12):e50736. doi: 10.1371/journal.pone.0050736. Epub 2012 Dec 17.
The receptor for advanced glycation end products (RAGE) on the cell surface transmits inflammatory signals. A member of the immunoglobulin superfamily, RAGE possesses the V, C1, and C2 ectodomains that collectively constitute the receptor's extracellular structure. However, the molecular mechanism of RAGE biogenesis remains unclear, impeding efforts to control RAGE signaling through cellular regulation. METHODOLOGY AND RESULT: We used co-immunoprecipitation and crossing-linking to study RAGE oligomerization and found that RAGE forms dimer-based oligomers. Via non-reducing SDS-polyacrylamide gel electrophoresis and mutagenesis, we found that cysteines 259 and 301 within the C2 domain form intermolecular disulfide bonds. Using a modified tripartite split GFP complementation strategy and confocal microscopy, we also found that RAGE dimerization occurs in the endoplasmic reticulum (ER), and that RAGE mutant molecules without the double disulfide bridges are unstable, and are subjected to the ER-associated degradation.
Disulfide bond-mediated RAGE dimerization in the ER is the critical step of RAGE biogenesis. Without formation of intermolecular disulfide bonds in the C2 region, RAGE fails to reach cell surface.
This is the first report of RAGE intermolecular disulfide bond.
细胞表面的晚期糖基化终产物受体(RAGE)传递炎症信号。RAGE 是免疫球蛋白超家族的成员,具有 V、C1 和 C2 胞外结构域,这些结构域共同构成了受体的细胞外结构。然而,RAGE 生物发生的分子机制仍不清楚,这阻碍了通过细胞调节来控制 RAGE 信号的努力。
我们使用共免疫沉淀和交联来研究 RAGE 的寡聚化,发现 RAGE 形成二聚体为基础的寡聚体。通过非还原 SDS-聚丙烯酰胺凝胶电泳和突变,我们发现 C2 结构域内的半胱氨酸 259 和 301 形成分子间二硫键。使用改良的三部分分裂 GFP 互补策略和共聚焦显微镜,我们还发现 RAGE 二聚化发生在内质网(ER)中,并且没有双二硫键的 RAGE 突变分子不稳定,并且受到 ER 相关降解的影响。
ER 中二硫键介导的 RAGE 二聚化是 RAGE 生物发生的关键步骤。如果 C2 区域内没有形成分子间二硫键,RAGE 就无法到达细胞表面。
这是 RAGE 分子间二硫键的首次报道。