Suppr超能文献

基于多标签传播聚类算法的疾病相关基因模块检测

Disease-related gene module detection based on a multi-label propagation clustering algorithm.

作者信息

Jiang Xue, Zhang Han, Quan Xiongwen, Liu Zhandong, Yin Yanbin

机构信息

College of Computer and Control Engineering, Nankai University, Tianjin 300350, China.

Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China.

出版信息

PLoS One. 2017 May 19;12(5):e0178006. doi: 10.1371/journal.pone.0178006. eCollection 2017.

Abstract

Detecting disease-related gene modules by analyzing gene expression data is of great significance. It is helpful for exploratory analysis of the interaction mechanisms of genes under complex disease phenotypes. The multi-label propagation algorithm (MLPA) has been widely used in module detection for its fast and easy implementation. The accuracy of MLPA greatly depends on the connections between nodes, and most existing research focuses on measuring the similarity between nodes. However, MLPA does not perform well with loose connections between disease-related genes. Moreover, the biological significance of modules obtained by MLPA has not been demonstrated. To solve these problems, we designed a double label propagation clustering algorithm (DLPCA) based on MLPA to study Huntington's disease. In DLPCA, in addition to category labels, we introduced pathogenic labels to supervise the process of multi-label propagation clustering. The pathogenic labels contain pathogenic information about disease genes and the hierarchical structure of gene expression data. Experimental results demonstrated the superior performance of DLPCA compared with other conventional gene-clustering algorithms.

摘要

通过分析基因表达数据来检测疾病相关基因模块具有重要意义。这有助于对复杂疾病表型下基因的相互作用机制进行探索性分析。多标签传播算法(MLPA)因其快速且易于实现而被广泛应用于模块检测。MLPA的准确性很大程度上取决于节点之间的连接,并且大多数现有研究集中于测量节点之间的相似性。然而,MLPA在疾病相关基因之间连接松散时表现不佳。此外,通过MLPA获得的模块的生物学意义尚未得到证明。为了解决这些问题,我们基于MLPA设计了一种双标签传播聚类算法(DLPCA)来研究亨廷顿舞蹈症。在DLPCA中,除了类别标签之外,我们引入了致病标签来监督多标签传播聚类的过程。致病标签包含有关疾病基因的致病信息以及基因表达数据的层次结构。实验结果表明,与其他传统基因聚类算法相比,DLPCA具有更优的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b39f/5438150/95694a15940e/pone.0178006.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验