Suppr超能文献

学习使用非重叠极值区域检测细胞。

Learning to detect cells using non-overlapping extremal regions.

作者信息

Arteta Carlos, Lempitsky Victor, Noble J Alison, Zisserman Andrew

机构信息

Department of Engineering Science, University of Oxford, UK.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 1):348-56. doi: 10.1007/978-3-642-33415-3_43.

Abstract

Cell detection in microscopy images is an important step in the automation of cell based-experiments. We propose a machine learning-based cell detection method applicable to different modalities. The method consists of three steps: first, a set of candidate cell-like regions is identified. Then, each candidate region is evaluated using a statistical model of the cell appearance. Finally, dynamic programming picks a set of non-overlapping regions that match the model. The cell model requires few images with simple dot annotation for training and can be learned within a structured SVM framework. In the reported experiments, state-of-the-art cell detection accuracy is achieved for H&E stained histology, fluorescence, and phase-contrast images.

摘要

显微镜图像中的细胞检测是基于细胞实验自动化的重要一步。我们提出了一种适用于不同模态的基于机器学习的细胞检测方法。该方法包括三个步骤:首先,识别出一组类似细胞的候选区域。然后,使用细胞外观的统计模型对每个候选区域进行评估。最后,动态规划选择一组与模型匹配的非重叠区域。该细胞模型在训练时只需要少量带有简单点状标注的图像,并且可以在结构化支持向量机框架内学习。在已报道的实验中,对于苏木精和伊红(H&E)染色的组织学图像、荧光图像和相差图像,均实现了当前最优的细胞检测精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验